Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 1;325(Pt 1):249–257. doi: 10.1042/bj3250249

Interaction of human neutrophil flavocytochrome b with cytosolic proteins: transferred-NOESY NMR studies of a gp91phox C-terminal peptide bound to p47phox.

E R Adams 1, E A Dratz 1, D Gizachew 1, F R Deleo 1, L Yu 1, B D Volpp 1, M Vlases 1, A J Jesaitis 1, M T Quinn 1
PMCID: PMC1218552  PMID: 9224653

Abstract

During activation of the neutrophil NADPH oxidase, cytosolic p47(phox) is translocated to the membrane where it associates with flavocytochrome b via multiple binding regions, including a site in the C-terminus of gp91(phox). To investigate this binding site further, we studied the three-dimensional structure of a gp91(phox) C-terminal peptide (551SNSESGPRGVHFIFNKEN568) bound to p47(phox) using transferred nuclear Overhauser effect spectroscopy (Tr-NOESY) NMR. Using MARDIGRAS analysis and simulated annealing, five similar sets of structures of the p47(phox)-bound peptide were obtained, all containing an extended open bend from Ser5 to Phe14 (corresponding to gp91(phox) residues 555-564). The ends of the peptide were poorly defined, however, suggesting they were more flexible. Therefore further refinement was performed on the Ser5-Phe14 region of the peptide after omitting the ends of the peptide from consideration. In this case, two similar structures were obtained. Both structures again exhibited extended open-bend conformations. In addition, the amino acid side chains that showed evidence of immobilization on binding to p47(phox) correlated directly with those that were found previously to be essential for biological activity. Thus during NADPH oxidase assembly, the C-terminus of gp91(phox) binds to 47(phox) in an extended conformation between gp91(phox) residues 555 and 564, with immobilization of all of the amino acid side chains in the 558RGVHFIF564 region except for His561.

Full Text

The Full Text of this article is available as a PDF (621.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., Boulay F., Badwey J. A., Curnutte J. T. Activation of neutrophil leukocytes: chemoattractant receptors and respiratory burst. FASEB J. 1993 Aug;7(11):1004–1010. doi: 10.1096/fasebj.7.11.8396540. [DOI] [PubMed] [Google Scholar]
  2. Basus V. J., Song G., Hawrot E. NMR solution structure of an alpha-bungarotoxin/nicotinic receptor peptide complex. Biochemistry. 1993 Nov 23;32(46):12290–12298. doi: 10.1021/bi00097a004. [DOI] [PubMed] [Google Scholar]
  3. Billeter M., Kline A. D., Braun W., Huber R., Wüthrich K. Comparison of the high-resolution structures of the alpha-amylase inhibitor tendamistat determined by nuclear magnetic resonance in solution and by X-ray diffraction in single crystals. J Mol Biol. 1989 Apr 20;206(4):677–687. doi: 10.1016/0022-2836(89)90575-5. [DOI] [PubMed] [Google Scholar]
  4. Brown J. H., Jardetzky T. S., Gorga J. C., Stern L. J., Urban R. G., Strominger J. L., Wiley D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993 Jul 1;364(6432):33–39. doi: 10.1038/364033a0. [DOI] [PubMed] [Google Scholar]
  5. Campbell A. P., Sykes B. D. Interaction of troponin I and troponin C. Use of the two-dimensional nuclear magnetic resonance transferred nuclear Overhauser effect to determine the structure of the inhibitory troponin I peptide when bound to skeletal troponin C. J Mol Biol. 1991 Nov 20;222(2):405–421. doi: 10.1016/0022-2836(91)90219-v. [DOI] [PubMed] [Google Scholar]
  6. Davis D. G., Perlman M. E., London R. E. Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1 rho and T2 (CPMG) methods. J Magn Reson B. 1994 Jul;104(3):266–275. doi: 10.1006/jmrb.1994.1084. [DOI] [PubMed] [Google Scholar]
  7. Davis J. H., Bradley E. K., Miljanich G. P., Nadasdi L., Ramachandran J., Basus V. J. Solution structure of omega-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis. Biochemistry. 1993 Jul 27;32(29):7396–7405. doi: 10.1021/bi00080a009. [DOI] [PubMed] [Google Scholar]
  8. De Leo F. R., Ulman K. V., Davis A. R., Jutila K. L., Quinn M. T. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem. 1996 Jul 19;271(29):17013–17020. doi: 10.1074/jbc.271.29.17013. [DOI] [PubMed] [Google Scholar]
  9. DeLeo F. R., Jutila M. A., Quinn M. T. Characterization of peptide diffusion into electropermeabilized neutrophils. J Immunol Methods. 1996 Oct 30;198(1):35–49. doi: 10.1016/0022-1759(96)00144-5. [DOI] [PubMed] [Google Scholar]
  10. DeLeo F. R., Nauseef W. M., Jesaitis A. J., Burritt J. B., Clark R. A., Quinn M. T. A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem. 1995 Nov 3;270(44):26246–26251. doi: 10.1074/jbc.270.44.26246. [DOI] [PubMed] [Google Scholar]
  11. DeLeo F. R., Quinn M. T. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol. 1996 Dec;60(6):677–691. doi: 10.1002/jlb.60.6.677. [DOI] [PubMed] [Google Scholar]
  12. DeLeo F. R., Yu L., Burritt J. B., Loetterle L. R., Bond C. W., Jesaitis A. J., Quinn M. T. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7110–7114. doi: 10.1073/pnas.92.15.7110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dratz E. A., Furstenau J. E., Lambert C. G., Thireault D. L., Rarick H., Schepers T., Pakhlevaniants S., Hamm H. E. NMR structure of a receptor-bound G-protein peptide. Nature. 1993 May 20;363(6426):276–281. doi: 10.1038/363276a0. [DOI] [PubMed] [Google Scholar]
  14. Driscoll P. C., Clore G. M., Beress L., Gronenborn A. M. A proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: sequential and stereospecific resonance assignment and secondary structure. Biochemistry. 1989 Mar 7;28(5):2178–2187. doi: 10.1021/bi00431a032. [DOI] [PubMed] [Google Scholar]
  15. Heyworth P. G., Curnutte J. T., Nauseef W. M., Volpp B. D., Pearson D. W., Rosen H., Clark R. A. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest. 1991 Jan;87(1):352–356. doi: 10.1172/JCI114993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jesaitis A. J. Structure of human phagocyte cytochrome b and its relationship to microbicidal superoxide production. J Immunol. 1995 Oct 1;155(7):3286–3288. [PubMed] [Google Scholar]
  17. Kleinberg M. E., Malech H. L., Rotrosen D. The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem. 1990 Sep 15;265(26):15577–15583. [PubMed] [Google Scholar]
  18. Kleinberg M. E., Mital D., Rotrosen D., Malech H. L. Characterization of a phagocyte cytochrome b558 91-kilodalton subunit functional domain: identification of peptide sequence and amino acids essential for activity. Biochemistry. 1992 Mar 17;31(10):2686–2690. doi: 10.1021/bi00125a008. [DOI] [PubMed] [Google Scholar]
  19. Koshkin V., Pick E. Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. FEBS Lett. 1993 Jul 19;327(1):57–62. doi: 10.1016/0014-5793(93)81039-3. [DOI] [PubMed] [Google Scholar]
  20. Leto T. L., Adams A. G., de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10650–10654. doi: 10.1073/pnas.91.22.10650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leto T. L., Garrett M. C., Fujii H., Nunoi H. Characterization of neutrophil NADPH oxidase factors p47-phox and p67-phox from recombinant baculoviruses. J Biol Chem. 1991 Oct 15;266(29):19812–19818. [PubMed] [Google Scholar]
  22. Leusen J. H., Bolscher B. G., Hilarius P. M., Weening R. S., Kaulfersch W., Seger R. A., Roos D., Verhoeven A. J. 156Pro-->Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med. 1994 Dec 1;180(6):2329–2334. doi: 10.1084/jem.180.6.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leusen J. H., de Boer M., Bolscher B. G., Hilarius P. M., Weening R. S., Ochs H. D., Roos D., Verhoeven A. J. A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Clin Invest. 1994 May;93(5):2120–2126. doi: 10.1172/JCI117207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyer E. F., Jr, Clore G. M., Gronenborn A. M., Hansen H. A. Analysis of an enzyme-substrate complex by X-ray crystallography and transferred nuclear Overhauser enhancement measurements: porcine pancreatic elastase and a hexapeptide. Biochemistry. 1988 Jan 26;27(2):725–730. doi: 10.1021/bi00402a035. [DOI] [PubMed] [Google Scholar]
  25. Nakanishi A., Imajoh-Ohmi S., Fujinawa T., Kikuchi H., Kanegasaki S. Direct evidence for interaction between COOH-terminal regions of cytochrome b558 subunits and cytosolic 47-kDa protein during activation of an O(2-)-generating system in neutrophils. J Biol Chem. 1992 Sep 25;267(27):19072–19074. [PubMed] [Google Scholar]
  26. Ni F., Ripoll D. R., Martin P. D., Edwards B. F. Solution structure of a platelet receptor peptide bound to bovine alpha-thrombin. Biochemistry. 1992 Nov 24;31(46):11551–11557. doi: 10.1021/bi00161a037. [DOI] [PubMed] [Google Scholar]
  27. Quinn M. T., Parkos C. A., Jesaitis A. J. The lateral organization of components of the membrane skeleton and superoxide generation in the plasma membrane of stimulated human neutrophils. Biochim Biophys Acta. 1989 Dec 11;987(1):83–94. doi: 10.1016/0005-2736(89)90458-6. [DOI] [PubMed] [Google Scholar]
  28. Robinson J. M., Badwey J. A. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol. 1995 Mar;103(3):163–180. doi: 10.1007/BF01454021. [DOI] [PubMed] [Google Scholar]
  29. Rotrosen D., Yeung C. L., Leto T. L., Malech H. L., Kwong C. H. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science. 1992 Jun 5;256(5062):1459–1462. doi: 10.1126/science.1318579. [DOI] [PubMed] [Google Scholar]
  30. Segal A. W. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest. 1989 Jun;83(6):1785–1793. doi: 10.1172/JCI114083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Segal A. W., West I., Wientjes F., Nugent J. H., Chavan A. J., Haley B., Garcia R. C., Rosen H., Scrace G. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J. 1992 Jun 15;284(Pt 3):781–788. doi: 10.1042/bj2840781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sumimoto H., Kage Y., Nunoi H., Sasaki H., Nose T., Fukumaki Y., Ohno M., Minakami S., Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5345–5349. doi: 10.1073/pnas.91.12.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES