Abstract
In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported previously for the SNF1-like enzyme, HRK-A. Our results indicate a considerable complexity of kinase cascades mediating the regulation of assimilatory and biosynthetic pathways in response to environmental stimuli in plants.
Full Text
The Full Text of this article is available as a PDF (480.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann M., Huber J. L., Liao P. C., Gage D. A., Huber S. C. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Lett. 1996 Jun 3;387(2-3):127–131. doi: 10.1016/0014-5793(96)00478-4. [DOI] [PubMed] [Google Scholar]
- Bachmann M., McMichael R. W., Jr, Huber J. L., Kaiser W. M., Huber S. C. Partial Purification and Characterization of a Calcium-Dependent Protein Kinase and an Inhibitor Protein Required for Inactivation of Spinach Leaf Nitrate Reductase. Plant Physiol. 1995 Jul;108(3):1083–1091. doi: 10.1104/pp.108.3.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmann M., Shiraishi N., Campbell W. H., Yoo B. C., Harmon A. C., Huber S. C. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell. 1996 Mar;8(3):505–517. doi: 10.1105/tpc.8.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ball K. L., Barker J., Halford N. G., Hardie D. G. Immunological evidence that HMG-CoA reductase kinase-A is the cauliflower homologue of the RKIN1 subfamily of plant protein kinases. FEBS Lett. 1995 Dec 18;377(2):189–192. doi: 10.1016/0014-5793(95)01343-1. [DOI] [PubMed] [Google Scholar]
- Ball K. L., Dale S., Weekes J., Hardie D. G. Biochemical characterization of two forms of 3-hydroxy-3-methylglutaryl-CoA reductase kinase from cauliflower (Brassica oleracia). Eur J Biochem. 1994 Feb 1;219(3):743–750. doi: 10.1111/j.1432-1033.1994.tb18553.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Clifton A. D., Young P. R., Cohen P. A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Lett. 1996 Sep 2;392(3):209–214. doi: 10.1016/0014-5793(96)00816-2. [DOI] [PubMed] [Google Scholar]
- Cohen P., Alemany S., Hemmings B. A., Resink T. J., Strålfors P., Tung H. Y. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 1988;159:390–408. doi: 10.1016/0076-6879(88)59039-0. [DOI] [PubMed] [Google Scholar]
- Dale S., Arró M., Becerra B., Morrice N. G., Boronat A., Hardie D. G., Ferrer A. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem. 1995 Oct 15;233(2):506–513. doi: 10.1111/j.1432-1033.1995.506_2.x. [DOI] [PubMed] [Google Scholar]
- Dale S., Wilson W. A., Edelman A. M., Hardie D. G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 1995 Mar 20;361(2-3):191–195. doi: 10.1016/0014-5793(95)00172-6. [DOI] [PubMed] [Google Scholar]
- Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
- Davies S. P., Helps N. R., Cohen P. T., Hardie D. G. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 1995 Dec 27;377(3):421–425. doi: 10.1016/0014-5793(95)01368-7. [DOI] [PubMed] [Google Scholar]
- Douglas P., Morrice N., MacKintosh C. Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett. 1995 Dec 18;377(2):113–117. doi: 10.1016/0014-5793(95)01300-8. [DOI] [PubMed] [Google Scholar]
- Duerr B., Gawienowski M., Ropp T., Jacobs T. MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell. 1993 Jan;5(1):87–96. doi: 10.1105/tpc.5.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enjuto M., Balcells L., Campos N., Caelles C., Arró M., Boronat A. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):927–931. doi: 10.1073/pnas.91.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannappel U., Vicente-Carbajosa J., Barker J. H., Shewry P. R., Halford N. G. Differential expression of two barley SNF1-related protein kinase genes. Plant Mol Biol. 1995 Mar;27(6):1235–1240. doi: 10.1007/BF00020898. [DOI] [PubMed] [Google Scholar]
- Hardie D. G., Carling D., Halford N. Roles of the Snf1/Rkin1/AMP-activated protein kinase family in the response to environmental and nutritional stress. Semin Cell Biol. 1994 Dec;5(6):409–416. doi: 10.1006/scel.1994.1048. [DOI] [PubMed] [Google Scholar]
- Harmon A. C., Putnam-Evans C., Cormier M. J. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. 1987 Apr;83(4):830–837. doi: 10.1104/pp.83.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser W. M., Brendle-Behnisch E. Rapid Modulation of Spinach Leaf Nitrate Reductase Activity by Photosynthesis : I. Modulation in Vivo by CO(2) Availability. Plant Physiol. 1991 Jun;96(2):363–367. doi: 10.1104/pp.96.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung J., Bouvier-Durand M., Morris P. C., Guerrier D., Chefdor F., Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994 Jun 3;264(5164):1448–1452. doi: 10.1126/science.7910981. [DOI] [PubMed] [Google Scholar]
- MacKintosh C. Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim Biophys Acta. 1992 Oct 6;1137(1):121–126. doi: 10.1016/0167-4889(92)90109-o. [DOI] [PubMed] [Google Scholar]
- Mackintosh C., Douglas P., Lillo C. Identification of a Protein That Inhibits the Phosphorylated Form of Nitrate Reductase from Spinach (Spinacia oleracea) Leaves. Plant Physiol. 1995 Feb;107(2):451–457. doi: 10.1104/pp.107.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackintosh R. W., Davies S. P., Clarke P. R., Weekes J., Gillespie J. G., Gibb B. J., Hardie D. G. Evidence for a protein kinase cascade in higher plants. 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem. 1992 Nov 1;209(3):923–931. doi: 10.1111/j.1432-1033.1992.tb17364.x. [DOI] [PubMed] [Google Scholar]
- McGarvey D. J., Croteau R. Terpenoid metabolism. Plant Cell. 1995 Jul;7(7):1015–1026. doi: 10.1105/tpc.7.7.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMichael R. W., Jr, Bachmann M., Huber S. C. Spinach Leaf Sucrose-Phosphate Synthase and Nitrate Reductase Are Phosphorylated/Inactivated by Multiple Protein Kinases in Vitro. Plant Physiol. 1995 Jul;108(3):1077–1082. doi: 10.1104/pp.108.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer K., Leube M. P., Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. doi: 10.1126/science.8197457. [DOI] [PubMed] [Google Scholar]
- Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol. 1996 Sep 1;6(9):1104–1113. doi: 10.1016/s0960-9822(02)70677-5. [DOI] [PubMed] [Google Scholar]
- Siegfried E., Perkins L. A., Capaci T. M., Perrimon N. Putative protein kinase product of the Drosophila segment-polarity gene zeste-white3. Nature. 1990 Jun 28;345(6278):825–829. doi: 10.1038/345825a0. [DOI] [PubMed] [Google Scholar]
- Stokoe D., Campbell D. G., Nakielny S., Hidaka H., Leevers S. J., Marshall C., Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov;11(11):3985–3994. doi: 10.1002/j.1460-2075.1992.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokoe D., Caudwell B., Cohen P. T., Cohen P. The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J. 1993 Dec 15;296(Pt 3):843–849. doi: 10.1042/bj2960843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watillon B., Kettmann R., Boxus P., Burny A. A calcium/calmodulin-binding serine/threonine protein kinase homologous to the mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells. Plant Physiol. 1993 Apr;101(4):1381–1384. doi: 10.1104/pp.101.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weekes J., Ball K. L., Caudwell F. B., Hardie D. G. Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides. FEBS Lett. 1993 Nov 22;334(3):335–339. doi: 10.1016/0014-5793(93)80706-z. [DOI] [PubMed] [Google Scholar]