Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):331–337. doi: 10.1042/bj3250331

Overexpression of arginine decarboxylase in transgenic plants.

D Burtin 1, A J Michael 1
PMCID: PMC1218565  PMID: 9230111

Abstract

The activity of arginine decarboxylase (ADC), a key enzyme in plant polyamine biosynthesis, was manipulated in two generations of transgenic tobacco plants. Second-generation transgenic plants overexpressing an oat ADC cDNA contained high levels of oat ADC transcript relative to tobacco ADC, possessed elevated ADC enzyme activity and accumulated 10-20-fold more agmatine, the direct product of ADC. In the presence of high levels of the precursor agmatine, no increase in the levels of the polyamines putrescine, spermidine and spermine was detected in the transgenic plants. Similarly, the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were unchanged. No diversion of polyamine metabolism into the hydroxycinnamic acid-polyamine conjugate pool or into the tobacco alkaloid nicotine was detected. Activity of the catabolic enzyme diamine oxidase was the same in transgenic and control plants. The elevated ADC activity and agmatine production were subjected to a metabolic/physical block preventing increased, i.e. deregulated, polyamine accumulation. Overaccumulation of agmatine in the transgenic plants did not affect morphological development.

Full Text

The Full Text of this article is available as a PDF (245.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Alhonen L., Heikkinen S., Sinervirta R., Halmekytö M., Alakuijala P., Jänne J. Transgenic mice expressing the human ornithine decarboxylase gene under the control of mouse metallothionein I promoter. Biochem J. 1996 Mar 1;314(Pt 2):405–408. doi: 10.1042/bj3140405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell E., Malmberg R. L. Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet. 1990 Dec;224(3):431–436. doi: 10.1007/BF00262438. [DOI] [PubMed] [Google Scholar]
  4. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borrell A., Culianez-Macia F. A., Altabella T., Besford R. T., Flores D., Tiburcio A. F. Arginine Decarboxylase Is Localized in Chloroplasts. Plant Physiol. 1995 Nov;109(3):771–776. doi: 10.1104/pp.109.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Burtin D., Martin-Tanguy J., Tepfer D. alpha-dl-Difluoromethylornithine, a Specific, Irreversible Inhibitor of Putrescine Biosynthesis, Induces a Phenotype in Tobacco Similar to That Ascribed to the Root-Inducing, Left-Hand Transferred DNA of Agrobacterium rhizogenes. Plant Physiol. 1991 Feb;95(2):461–468. doi: 10.1104/pp.95.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeScenzo R. A., Minocha S. C. Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol. 1993 Apr;22(1):113–127. doi: 10.1007/BF00039000. [DOI] [PubMed] [Google Scholar]
  9. Eloranta T., Kajander O., Kauppinen L., Hyvönen T., Linnala-Kankkunen A., Kalkkinen N., Kulomaa M., Alhonen L., Jänne J. Approaching the structures of mammalian propylamine transferases and their genes. Adv Exp Med Biol. 1988;250:117–126. doi: 10.1007/978-1-4684-5637-0_12. [DOI] [PubMed] [Google Scholar]
  10. Guerineau F., Lucy A., Mullineaux P. Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol Biol. 1992 Feb;18(4):815–818. doi: 10.1007/BF00020027. [DOI] [PubMed] [Google Scholar]
  11. Halmekytö M., Hyttinen J. M., Sinervirta R., Leppänen P., Jänne J., Alhonen L. Regulation of the expression of human ornithine decarboxylase gene and ornithine decarboxylase promoter-driven reporter gene in transgenic mice. Biochem J. 1993 Jun 15;292(Pt 3):927–932. doi: 10.1042/bj2920927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halmekytö M., Hyttinen J. M., Sinervirta R., Utriainen M., Myöhänen S., Voipio H. M., Wahlfors J., Syrjänen S., Syrjänen K., Alhonen L. Transgenic mice aberrantly expressing human ornithine decarboxylase gene. J Biol Chem. 1991 Oct 15;266(29):19746–19751. [PubMed] [Google Scholar]
  13. Hamill J. D., Robins R. J., Parr A. J., Evans D. M., Furze J. M., Rhodes M. J. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol. 1990 Jul;15(1):27–38. doi: 10.1007/BF00017721. [DOI] [PubMed] [Google Scholar]
  14. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  15. Hiatt A. Polyamine synthesis in maize cell lines. Plant Physiol. 1989 Aug;90(4):1378–1381. doi: 10.1104/pp.90.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hibi N., Higashiguchi S., Hashimoto T., Yamada Y. Gene expression in tobacco low-nicotine mutants. Plant Cell. 1994 May;6(5):723–735. doi: 10.1105/tpc.6.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hill J. R., Morris D. R. Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Dependence on translation and coding capacity of the cis-acting upstream open reading frame. J Biol Chem. 1993 Jan 5;268(1):726–731. [PubMed] [Google Scholar]
  18. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Malmberg R. L., Cellino M. L. Arginine decarboxylase of oats is activated by enzymatic cleavage into two polypeptides. J Biol Chem. 1994 Jan 28;269(4):2703–2706. [PubMed] [Google Scholar]
  20. Malmberg R. L., Smith K. E., Bell E., Cellino M. L. Arginine decarboxylase of oats is clipped from a precursor into two polypeptides found in the soluble enzyme. Plant Physiol. 1992 Sep;100(1):146–152. doi: 10.1104/pp.100.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  22. Michael A. J., Furze J. M., Rhodes M. J., Burtin D. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J. 1996 Feb 15;314(Pt 1):241–248. doi: 10.1042/bj3140241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 1990 Apr;2(4):279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Negrel J., Paynot M., Javelle F. Purification and Properties of Putrescine Hydroxycinnamoyl Transferase from Tobacco (Nicotiana tabacum) Cell Suspensions. Plant Physiol. 1992 Apr;98(4):1264–1269. doi: 10.1104/pp.98.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  26. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pistocchi R., Keller F., Bagni N., Matile P. Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles. Plant Physiol. 1988 Jun;87(2):514–518. doi: 10.1104/pp.87.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pérez-Amador M. A., Carbonell J., Granell A. Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.). Plant Mol Biol. 1995 Sep;28(6):997–1009. doi: 10.1007/BF00032662. [DOI] [PubMed] [Google Scholar]
  29. Rastogi R., Dulson J., Rothstein S. J. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol. 1993 Nov;103(3):829–834. doi: 10.1104/pp.103.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sandmeier E., Hale T. I., Christen P. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Eur J Biochem. 1994 May 1;221(3):997–1002. doi: 10.1111/j.1432-1033.1994.tb18816.x. [DOI] [PubMed] [Google Scholar]
  31. Smith M. A., Davies P. J. Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol. 1985 May;78(1):89–91. doi: 10.1104/pp.78.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  33. Tiburcio A. F., Galston A. W. Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry. 1986;25(1):107–110. doi: 10.1016/s0031-9422(00)94511-4. [DOI] [PubMed] [Google Scholar]
  34. Tiburcio A. F., Kaur-Sawhney R., Galston A. W. Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus cultures. Plant Cell Tissue Organ Cult. 1987;9:111–120. doi: 10.1007/BF00044246. [DOI] [PubMed] [Google Scholar]
  35. Tricot C., Piérard A., Stalon V. Comparative studies on the degradation of guanidino and ureido compounds by Pseudomonas. J Gen Microbiol. 1990 Nov;136(11):2307–2317. doi: 10.1099/00221287-136-11-2307. [DOI] [PubMed] [Google Scholar]
  36. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watson M. B., Malmberg R. L. Regulation of Arabidopsis thaliana (L.) Heynh Arginine decarboxylase by potassium deficiency stress. Plant Physiol. 1996 Aug;111(4):1077–1083. doi: 10.1104/pp.111.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES