Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):359–365. doi: 10.1042/bj3250359

Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus.

A Vaughan 1, N Hawkes 1, J Hemingway 1
PMCID: PMC1218568  PMID: 9230114

Abstract

The mosquito Culex quinquefasciatus (Say) is a vector of human disease and a world-wide biting nuisance. Organophosphorus insecticides (OPs) have been widely used to control C. quinquefasciatus populations and this has led to the emergence of OP-resistance. Predominantly, resistance is caused by increased production of two non-specific carboxylesterases, Estalpha2(1) and Estbeta2(1). Increased abundance of these esterases is associated with the amplification of their respective genes. The estalpha21 and estbeta21 genes were cloned and sequenced from OP-resistant Sri Lankan C. quinquefasciatus; the two adjacent genes are in a head to head configuration, within a single amplification unit (amplicon). The homology between the two genes suggests that they arose from an ancient duplication event. The two genes have different numbers of exons (estalpha21 has seven and estbeta21 has four); however, the intron/exon boundaries in estbeta21 are all conserved in estalpha21. The two genes are co-amplified in three other mosquito strains with the elevated Estalpha2(1)/Estbeta2(1) phenotype. Their complete linkage disequilibrium is explained by the location of the two genes involved in resistance within a single amplicon. In insecticide-susceptible C. quinquefasciatus, the non-amplified estalpha and estbeta gene loci are also found in a similar head to head configuration, but the size of the intergenic non-coding region is approx. 1 kb less than in the amplicon. The smaller intergenic spacer is also found in a strain with amplified estbeta11, which suggests that extensive laboratory selection for this amplified esterase has not eliminated the non-amplified genes. The intergenic spacer regions have been subcloned and sequenced. They contain numerous possible TATA boxes, promoters and a number of possible regulatory elements with high homology to the consensus sequence of the Barbie box. These latter putative regulatory elements are more numerous in the larger intergenic spacer, which differs from the non-amplified spacer by two large (>>420 bp) and one small (5 bp) insertions.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRIDGE W. N. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem J. 1953 Jan;53(1):110–117. doi: 10.1042/bj0530110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amin A. M., Peiris H. T. Detection and selection of organophosphate and carbamate resistance in Culex quinquefasciatus from Saudi Arabia. Med Vet Entomol. 1990 Jul;4(3):269–273. doi: 10.1111/j.1365-2915.1990.tb00439.x. [DOI] [PubMed] [Google Scholar]
  3. Brady J. P., Richmond R. C., Oakeshott J. G. Cloning of the esterase-5 locus from Drosophila pseudoobscura and comparison with its homologue in D. melanogaster. Mol Biol Evol. 1990 Nov;7(6):525–546. doi: 10.1093/oxfordjournals.molbev.a040624. [DOI] [PubMed] [Google Scholar]
  4. Brooten D., Jordan C. H. Caffeine and pregnancy. A research review and recommendations for clinical practice. JOGN Nurs. 1983 May-Jun;12(3):190–195. doi: 10.1111/j.1552-6909.1983.tb01067.x. [DOI] [PubMed] [Google Scholar]
  5. Callaghan A., Hemingway J., Malcolm C. A. The selection and genetic analysis of esterase electromorphs in an organophosphate-resistant strain of Culex pipiens from Italy. Biochem Genet. 1993 Dec;31(11-12):459–472. doi: 10.1007/BF02426878. [DOI] [PubMed] [Google Scholar]
  6. Collet C., Nielsen K. M., Russell R. J., Karl M., Oakeshott J. G., Richmond R. C. Molecular analysis of duplicated esterase genes in Drosophila melanogaster. Mol Biol Evol. 1990 Jan;7(1):9–28. doi: 10.1093/oxfordjournals.molbev.a040582. [DOI] [PubMed] [Google Scholar]
  7. Field L. M., Williamson M. S., Moores G. D., Devonshire A. L. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem J. 1993 Sep 1;294(Pt 2):569–574. doi: 10.1042/bj2940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  9. Hemingway J., Callaghan A., Amin A. M. Mechanisms of organophosphate and carbamate resistance in Culex quinquefasciatus from Saudi Arabia. Med Vet Entomol. 1990 Jul;4(3):275–282. doi: 10.1111/j.1365-2915.1990.tb00440.x. [DOI] [PubMed] [Google Scholar]
  10. Karunaratne S. H., Jayawardena K. G., Hemingway J., Ketterman A. J. Characterization of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefasciatus. Biochem J. 1993 Sep 1;294(Pt 2):575–579. doi: 10.1042/bj2940575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karunaratne S. H., Jayawardena K. G., Hemingway J., Ketterman A. J. Immunological cross-reactivity of a mosquito carboxylesterase-A2 antibody to other mosquito and vertebrate esterases and cholinesterase. Biochem Soc Trans. 1994 May;22(2):127S–127S. doi: 10.1042/bst022127s. [DOI] [PubMed] [Google Scholar]
  12. Lubet R. A., Dragnev K. H., Chauhan D. P., Nims R. W., Diwan B. A., Ward J. M., Jones C. R., Rice J. M., Miller M. S. A pleiotropic response to phenobarbital-type enzyme inducers in the F344/NCr rat. Effects of chemicals of varied structure. Biochem Pharmacol. 1992 Mar 3;43(5):1067–1078. doi: 10.1016/0006-2952(92)90614-o. [DOI] [PubMed] [Google Scholar]
  13. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mouchès C., Magnin M., Bergé J. B., de Silvestri M., Beyssat V., Pasteur N., Georghiou G. P. Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2113–2116. doi: 10.1073/pnas.84.8.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mouchès C., Pasteur N., Bergé J. B., Hyrien O., Raymond M., de Saint Vincent B. R., de Silvestri M., Georghiou G. P. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science. 1986 Aug 15;233(4765):778–780. doi: 10.1126/science.3755546. [DOI] [PubMed] [Google Scholar]
  16. Prabhaker N., Georghiou G. P., Pasteur N. Genetic association between highly active esterases and organophosphate resistance in Culex tarsalis. J Am Mosq Control Assoc. 1987 Sep;3(3):473–475. [PubMed] [Google Scholar]
  17. Raymond M., Beyssat-Arnaouty V., Sivasubramanian N., Mouchès C., Georghiou G. P., Pasteur N. Amplification of various esterase B's responsible for organophosphate resistance in Culex mosquitoes. Biochem Genet. 1989 Aug;27(7-8):417–423. doi: 10.1007/BF02399670. [DOI] [PubMed] [Google Scholar]
  18. Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
  19. Takahashi M., Yasutomi K. Insecticidal resistance of Culex tritaeniorhynchus (Diptera: Culicidae) in Japan: genetics and mechanisms of resistance to organophosphorus insecticides. J Med Entomol. 1987 Nov;24(6):595–603. doi: 10.1093/jmedent/24.6.595. [DOI] [PubMed] [Google Scholar]
  20. Vaughan A., Hemingway J. Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J Biol Chem. 1995 Jul 14;270(28):17044–17049. doi: 10.1074/jbc.270.28.17044. [DOI] [PubMed] [Google Scholar]
  21. Vaughan A., Rodriguez M., Hemingway J. The independent gene amplification of electrophoretically indistinguishable B esterases from the insecticide-resistant mosquito Culex quinquefasciatus. Biochem J. 1995 Jan 15;305(Pt 2):651–658. doi: 10.1042/bj3050651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wirth M. C., Marquine M., Georghiou G. P., Pasteur N. Esterases A2 and B2 in Culex quinquefasciatus (Diptera: Culicidae): role in organophosphate resistance and linkage. J Med Entomol. 1990 Mar;27(2):202–206. doi: 10.1093/jmedent/27.2.202. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES