Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):367–373. doi: 10.1042/bj3250367

Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid.

M Dieuaide-Noubhani 1, S Asselberghs 1, G P Mannaerts 1, P P Van Veldhoven 1
PMCID: PMC1218569  PMID: 9230115

Abstract

The second (enoyl-CoA hydratase) and third (3-hydroxyacyl-CoA dehydrogenase) steps of peroxisomal beta-oxidation are catalysed by two separate multifunctional proteins (MFPs), MFP-1 being involved in the degradation of straight-chain fatty acids and MFP-2 in the beta-oxidation of the side chain of cholesterol (bile acid synthesis). In the present study we determined which of the two MFPs is involved in the peroxisomal degradation of pristanic acid by using the synthetic analogue 2-methylpalmitic acid. The four stereoisomers of 3-hydroxy-2-methylpalmitoyl-CoA were separated by gas chromatography after hydrolysis, methylation and derivatization of the hydroxy group with (S)-2-phenylpropionic acid, and the stereoisomers were designated I-IV according to their order of elution from the column. Purified MFP-1 dehydrated stereoisomer IV but dehydrogenated stereoisomer III, so by itself MFP-1 is not capable of converting a branched enoyl-CoA into a 3-ketoacyl-CoA. In contrast, MFP-2 dehydrated and dehydrogenated the same stereoisomer (II), so it is highly probable that MFP-2 is involved in the peroxisomal degradation of branched fatty acids and that stereoisomer II is the physiological intermediate in branched fatty acid oxidation. By analogy with the results obtained with the four stereoisomers of the bile acid intermediate varanoyl-CoA, stereoisomer II can be assigned the 3R-hydroxy, 2R-methyl configuration.

Full Text

The Full Text of this article is available as a PDF (359.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamski J., Normand T., Leenders F., Monté D., Begue A., Stéhelin D., Jungblut P. W., de Launoit Y. Molecular cloning of a novel widely expressed human 80 kDa 17 beta-hydroxysteroid dehydrogenase IV. Biochem J. 1995 Oct 15;311(Pt 2):437–443. doi: 10.1042/bj3110437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Croes K., Casteels M., De Hoffmann E., Mannaerts G. P., Van Veldhoven P. P. alpha-Oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate. Eur J Biochem. 1996 Sep 15;240(3):674–683. doi: 10.1111/j.1432-1033.1996.0674h.x. [DOI] [PubMed] [Google Scholar]
  3. Declercq P. E., Haagsman H. P., Van Veldhoven P., Debeer L. J., Van Golde L. M., Mannaerts G. P. Rat liver dihydroxyacetone-phosphate acyltransferases and their contribution to glycerolipid synthesis. J Biol Chem. 1984 Jul 25;259(14):9064–9075. [PubMed] [Google Scholar]
  4. Dieuaide-Noubhani M., Novikov D., Baumgart E., Vanhooren J. C., Fransen M., Goethals M., Vandekerckhove J., Van Veldhoven P. P., Mannaerts G. P. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur J Biochem. 1996 Sep 15;240(3):660–666. doi: 10.1111/j.1432-1033.1996.0660h.x. [DOI] [PubMed] [Google Scholar]
  5. Dieuaide-Noubhani M., Novikov D., Vandekerckhove J., Veldhoven P. P., Mannaerts G. P. Identification and characterization of the 2-enoyl-CoA hydratases involved in peroxisomal beta-oxidation in rat liver. Biochem J. 1997 Jan 1;321(Pt 1):253–259. doi: 10.1042/bj3210253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hammarström S., Hamberg M. Steric analysis of 3-, 4, 3- and 2-hydroxy acids and various alkanols by gas-liquid chromatography. Anal Biochem. 1973 Mar;52(1):169–179. doi: 10.1016/0003-2697(73)90342-4. [DOI] [PubMed] [Google Scholar]
  7. Inestrosa N. C., Bronfman M., Leighton F. Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver. Biochem Biophys Res Commun. 1980 Jul 16;95(1):7–12. doi: 10.1016/0006-291x(80)90696-8. [DOI] [PubMed] [Google Scholar]
  8. Jiang L. L., Miyazawa S., Hashimoto T. Purification and properties of rat D-3-hydroxyacyl-CoA dehydratase: D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein. J Biochem. 1996 Sep;120(3):633–641. doi: 10.1093/oxfordjournals.jbchem.a021459. [DOI] [PubMed] [Google Scholar]
  9. Jin S. J., Hoppel C. L., Tserng K. Y. Incomplete fatty acid oxidation. The production and epimerization of 3-hydroxy fatty acids. J Biol Chem. 1992 Jan 5;267(1):119–125. [PubMed] [Google Scholar]
  10. Kurosawa T., Sato M., Nakano H., Tohma M. Synthesis of diastereomers of 3 alpha,7 alpha,12 alpha, 24-tetrahydroxy- and 3 alpha,7 alpha,24-trihydroxy-5 beta-cholestan- 26-oic acids and their structures. Steroids. 1996 Jul;61(7):421–428. doi: 10.1016/0039-128x(96)00062-1. [DOI] [PubMed] [Google Scholar]
  11. Leenders F., Adamski J., Husen B., Thole H. H., Jungblut P. W. Molecular cloning and amino acid sequence of the porcine 17 beta-estradiol dehydrogenase. Eur J Biochem. 1994 May 15;222(1):221–227. doi: 10.1111/j.1432-1033.1994.tb18860.x. [DOI] [PubMed] [Google Scholar]
  12. Leenders F., Tesdorpf J. G., Markus M., Engel T., Seedorf U., Adamski J. Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities. J Biol Chem. 1996 Mar 8;271(10):5438–5442. doi: 10.1074/jbc.271.10.5438. [DOI] [PubMed] [Google Scholar]
  13. Mannaerts G. P., Van Veldhoven P. P. Metabolic pathways in mammalian peroxisomes. Biochimie. 1993;75(3-4):147–158. doi: 10.1016/0300-9084(93)90072-z. [DOI] [PubMed] [Google Scholar]
  14. Mao L. F., Chu C., Luo M. J., Simon A., Abbas A. S., Schulz H. Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver. Arch Biochem Biophys. 1995 Aug 1;321(1):221–228. doi: 10.1006/abbi.1995.1389. [DOI] [PubMed] [Google Scholar]
  15. Nada M. A., Rhead W. J., Sprecher H., Schulz H., Roe C. R. Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem. 1995 Jan 13;270(2):530–535. doi: 10.1074/jbc.270.2.530. [DOI] [PubMed] [Google Scholar]
  16. Novikov D. K., Vanhove G. F., Carchon H., Asselberghs S., Eyssen H. J., Van Veldhoven P. P., Mannaerts G. P. Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes. J Biol Chem. 1994 Oct 28;269(43):27125–27135. [PubMed] [Google Scholar]
  17. Novikov D., Dieuaide-Noubhani M., Vermeesch J. R., Fournier B., Mannaerts G. P., Van Veldhoven P. P. The human peroxisomal multifunctional protein involved in bile acid synthesis: activity measurement, deficiency in Zellweger syndrome and chromosome mapping. Biochim Biophys Acta. 1997 May 24;1360(3):229–240. doi: 10.1016/s0925-4439(97)00003-3. [DOI] [PubMed] [Google Scholar]
  18. Osumi T., Hashimoto T. Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys. 1980 Aug;203(1):372–383. doi: 10.1016/0003-9861(80)90189-7. [DOI] [PubMed] [Google Scholar]
  19. Osumi T., Hashimoto T., Ui N. Purification and properties of acyl-CoA oxidase from rat liver. J Biochem. 1980 Jun;87(6):1735–1746. doi: 10.1093/oxfordjournals.jbchem.a132918. [DOI] [PubMed] [Google Scholar]
  20. Osumi T., Ishii N., Hijikata M., Kamijo K., Ozasa H., Furuta S., Miyazawa S., Kondo K., Inoue K., Kagamiyama H. Molecular cloning and nucleotide sequence of the cDNA for rat peroxisomal enoyl-CoA: hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. J Biol Chem. 1985 Jul 25;260(15):8905–8910. [PubMed] [Google Scholar]
  21. Palosaari P. M., Hiltunen J. K. Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem. 1990 Feb 15;265(5):2446–2449. [PubMed] [Google Scholar]
  22. Qin Y. M., Poutanen M. H., Helander H. M., Kvist A. P., Siivari K. M., Schmitz W., Conzelmann E., Hellman U., Hiltunen J. K. Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization. Biochem J. 1997 Jan 1;321(Pt 1):21–28. doi: 10.1042/bj3210021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reddy J. K., Mannaerts G. P. Peroxisomal lipid metabolism. Annu Rev Nutr. 1994;14:343–370. doi: 10.1146/annurev.nu.14.070194.002015. [DOI] [PubMed] [Google Scholar]
  24. Schepers L., Van Veldhoven P. P., Casteels M., Eyssen H. J., Mannaerts G. P. Presence of three acyl-CoA oxidases in rat liver peroxisomes. An inducible fatty acyl-CoA oxidase, a noninducible fatty acyl-CoA oxidase, and a noninducible trihydroxycoprostanoyl-CoA oxidase. J Biol Chem. 1990 Mar 25;265(9):5242–5246. [PubMed] [Google Scholar]
  25. Schulz H. Beta oxidation of fatty acids. Biochim Biophys Acta. 1991 Jan 28;1081(2):109–120. doi: 10.1016/0005-2760(91)90015-a. [DOI] [PubMed] [Google Scholar]
  26. Seedorf U., Brysch P., Engel T., Schrage K., Assmann G. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem. 1994 Aug 19;269(33):21277–21283. [PubMed] [Google Scholar]
  27. Une M., Inoue A., Hoshita T. Formation of varanic acid, 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid from 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid in Bombina orientalis. Steroids. 1996 Nov;61(11):639–641. doi: 10.1016/s0039-128x(96)00137-7. [DOI] [PubMed] [Google Scholar]
  28. Une M., Izumi N., Hoshita T. Stereochemistry of intermediates in the conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid by rat liver peroxisomes. J Biochem. 1993 Feb;113(2):141–143. doi: 10.1093/oxfordjournals.jbchem.a124017. [DOI] [PubMed] [Google Scholar]
  29. Une M., Morigami I., Kihira K., Hoshita T. Stereospecific formation of (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-en-26-oic acid and (24R,25S)-3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid from either (25R)- or (25S)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid by rat liver homogenate. J Biochem. 1984 Oct;96(4):1103–1107. doi: 10.1093/oxfordjournals.jbchem.a134927. [DOI] [PubMed] [Google Scholar]
  30. Van Veldhoven P. P., Croes K., Asselberghs S., Herdewijn P., Mannaerts G. P. Peroxisomal beta-oxidation of 2-methyl-branched acyl-CoA esters: stereospecific recognition of the 2S-methyl compounds by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase. FEBS Lett. 1996 Jun 10;388(1):80–84. doi: 10.1016/0014-5793(96)00508-x. [DOI] [PubMed] [Google Scholar]
  31. Van Veldhoven P. P., Just W. W., Mannaerts G. P. Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem. 1987 Mar 25;262(9):4310–4318. [PubMed] [Google Scholar]
  32. Van Veldhoven P. P., Vanhove G., Assselberghs S., Eyssen H. J., Mannaerts G. P. Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem. 1992 Oct 5;267(28):20065–20074. [PubMed] [Google Scholar]
  33. Van Veldhoven P. P., Vanhove G., Vanhoutte F., Dacremont G., Parmentier G., Eyssen H. J., Mannaerts G. P. Identification and purification of a peroxisomal branched chain fatty acyl-CoA oxidase. J Biol Chem. 1991 Dec 25;266(36):24676–24683. [PubMed] [Google Scholar]
  34. Xu R., Cuebas D. A. The reactions catalyzed by the inducible bifunctional enzyme of rat liver peroxisomes cannot lead to the formation of bile acids. Biochem Biophys Res Commun. 1996 Apr 16;221(2):271–278. doi: 10.1006/bbrc.1996.0585. [DOI] [PubMed] [Google Scholar]
  35. van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES