Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):391–400. doi: 10.1042/bj3250391

Asymmetry adjacent to the collagen-like domain in rat liver mannose-binding protein.

R Wallis 1, K Drickamer 1
PMCID: PMC1218572  PMID: 9230118

Abstract

Rat liver mannose-binding protein (MBP-C) is the smallest known member of the collectin family of animal lectins, many of which are involved in defence against microbial pathogens. It consists of an N-terminal collagen-like domain linked to C-terminal carbohydrate-recognition domains. MBP-C, overproduced in Chinese-hamster ovary cells, is post-translationally modified and processed in a manner similar to the native lectin. Analytical ultracentrifugation experiments indicate that MBP-C is trimeric, with a weight-averaged molecular mass of approx. 77 kDa. The rate of sedimentation of MBP-C and its mobility on gel filtration suggest a highly elongated molecule. Anomalous behaviour on gel filtration due to this extended conformation may explain previous suggestions that MBP-C forms a higher oligomer. The polypeptide chains of the MBP-C trimer are linked by disulphide bonds between two cysteine residues at the N-terminal junction of the collagen-like domain. Analysis of an N-terminal tryptic fragment reveals that the disulphide bonding in MBP-C is heterogeneous and asymmetrical. These results indicate that assembly of MBP-C oligomers probably proceeds in a C- to N-terminal direction: trimerization at the C-terminus is followed by assembly of the collagenous domain and finally formation of N-terminal disulphide bonds. The relatively simple organization of MBP-C provides a template for understanding larger, more complex collectins.

Full Text

The Full Text of this article is available as a PDF (676.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bella J., Eaton M., Brodsky B., Berman H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science. 1994 Oct 7;266(5182):75–81. doi: 10.1126/science.7695699. [DOI] [PubMed] [Google Scholar]
  2. Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
  3. Childs R. A., Feizi T., Yuen C. T., Drickamer K., Quesenberry M. S. Differential recognition of core and terminal portions of oligosaccharide ligands by carbohydrate-recognition domains of two mannose-binding proteins. J Biol Chem. 1990 Dec 5;265(34):20770–20777. [PubMed] [Google Scholar]
  4. Colley K. J., Baenziger J. U. Identification of the post-translational modifications of the core-specific lectin. The core-specific lectin contains hydroxyproline, hydroxylysine, and glucosylgalactosylhydroxylysine residues. J Biol Chem. 1987 Jul 25;262(21):10290–10295. [PubMed] [Google Scholar]
  5. Crimmins D. L., Saylor M., Rush J., Thoma R. S. Facile, in situ matrix-assisted laser desorption ionization-mass spectrometry analysis and assignment of disulfide pairings in heteropeptide molecules. Anal Biochem. 1995 Apr 10;226(2):355–361. doi: 10.1006/abio.1995.1236. [DOI] [PubMed] [Google Scholar]
  6. Drickamer K., Taylor M. E. Biology of animal lectins. Annu Rev Cell Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
  7. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  8. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  9. Holmskov U., Laursen S. B., Malhotra R., Wiedemann H., Timpl R., Stuart G. R., Tornøe I., Madsen P. S., Reid K. B., Jensenius J. C. Comparative study of the structural and functional properties of a bovine plasma C-type lectin, collectin-43, with other collectins. Biochem J. 1995 Feb 1;305(Pt 3):889–896. doi: 10.1042/bj3050889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoppe H. J., Reid K. B. Collectins--soluble proteins containing collagenous regions and lectin domains--and their roles in innate immunity. Protein Sci. 1994 Aug;3(8):1143–1158. doi: 10.1002/pro.5560030801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987 Jun 5;262(16):7451–7454. [PubMed] [Google Scholar]
  12. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaufman R. J., Davies M. V., Wasley L. C., Michnick D. Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res. 1991 Aug 25;19(16):4485–4490. doi: 10.1093/nar/19.16.4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaufman R. J. Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol. 1990;185:537–566. doi: 10.1016/0076-6879(90)85044-o. [DOI] [PubMed] [Google Scholar]
  15. Kuhlman M., Joiner K., Ezekowitz R. A. The human mannose-binding protein functions as an opsonin. J Exp Med. 1989 May 1;169(5):1733–1745. doi: 10.1084/jem.169.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lesage A., Penin F., Geourjon C., Marion D., van der Rest M. Trimeric assembly and three-dimensional structure model of the FACIT collagen COL1-NC1 junction from CD and NMR analysis. Biochemistry. 1996 Jul 30;35(30):9647–9660. doi: 10.1021/bi952666p. [DOI] [PubMed] [Google Scholar]
  18. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  19. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  20. Mayne R., Brewton R. G. New members of the collagen superfamily. Curr Opin Cell Biol. 1993 Oct;5(5):883–890. doi: 10.1016/0955-0674(93)90039-s. [DOI] [PubMed] [Google Scholar]
  21. Mizuno Y., Kozutsumi Y., Kawasaki T., Yamashina I. Isolation and characterization of a mannan-binding protein from rat liver. J Biol Chem. 1981 May 10;256(9):4247–4252. [PubMed] [Google Scholar]
  22. Mori K., Kawasaki T., Yamashina I. Isolation and characterization of endogenous ligands for liver mannan-binding protein. Arch Biochem Biophys. 1988 Aug 1;264(2):647–656. doi: 10.1016/0003-9861(88)90331-1. [DOI] [PubMed] [Google Scholar]
  23. Ng K. K., Drickamer K., Weis W. I. Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem. 1996 Jan 12;271(2):663–674. doi: 10.1074/jbc.271.2.663. [DOI] [PubMed] [Google Scholar]
  24. Peerschke E. I., Malhotra R., Ghebrehiwet B., Reid K. B., Willis A. C., Sim R. B. Isolation of a human endothelial cell C1q receptor (C1qR). J Leukoc Biol. 1993 Feb;53(2):179–184. doi: 10.1002/jlb.53.2.179. [DOI] [PubMed] [Google Scholar]
  25. Persson A., Chang D., Rust K., Moxley M., Longmore W., Crouch E. Purification and biochemical characterization of CP4 (SP-D), a collagenous surfactant-associated protein. Biochemistry. 1989 Jul 25;28(15):6361–6367. doi: 10.1021/bi00441a031. [DOI] [PubMed] [Google Scholar]
  26. Quesenberry M. S., Drickamer K. Role of conserved and nonconserved residues in the Ca(2+)-dependent carbohydrate-recognition domain of a rat mannose-binding protein. Analysis by random cassette mutagenesis. J Biol Chem. 1992 May 25;267(15):10831–10841. [PubMed] [Google Scholar]
  27. Quesenberry M. S., Lee R. T., Lee Y. C. Difference in the binding mode of two mannose-binding proteins: demonstration of a selective minicluster effect. Biochemistry. 1997 Mar 4;36(9):2724–2732. doi: 10.1021/bi9622635. [DOI] [PubMed] [Google Scholar]
  28. Reddy P., Sparvoli A., Fagioli C., Fassina G., Sitia R. Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains. EMBO J. 1996 May 1;15(9):2077–2085. [PMC free article] [PubMed] [Google Scholar]
  29. Resnick D., Chatterton J. E., Schwartz K., Slayter H., Krieger M. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain. J Biol Chem. 1996 Oct 25;271(43):26924–26930. doi: 10.1074/jbc.271.43.26924. [DOI] [PubMed] [Google Scholar]
  30. Rohrer L., Freeman M., Kodama T., Penman M., Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature. 1990 Feb 8;343(6258):570–572. doi: 10.1038/343570a0. [DOI] [PubMed] [Google Scholar]
  31. Super M., Levinsky R. J., Turner M. W. The level of mannan-binding protein regulates the binding of complement-derived opsonins to mannan and zymosan at low serum concentrations. Clin Exp Immunol. 1990 Feb;79(2):144–150. doi: 10.1111/j.1365-2249.1990.tb05170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weis W. I., Drickamer K. Trimeric structure of a C-type mannose-binding protein. Structure. 1994 Dec 15;2(12):1227–1240. doi: 10.1016/S0969-2126(94)00124-3. [DOI] [PubMed] [Google Scholar]
  33. Yokota Y., Arai T., Kawasaki T. Oligomeric structures required for complement activation of serum mannan-binding proteins. J Biochem. 1995 Feb;117(2):414–419. doi: 10.1093/jb/117.2.414. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES