Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):411–416. doi: 10.1042/bj3250411

Activation of sea-urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux.

F A Dorsten 1, M Wyss 1, T Wallimann 1, K Nicolay 1
PMCID: PMC1218575  PMID: 9230121

Abstract

The kinetics of the creatine kinase (CK) reaction were studied in suspensions of quiescent and active, intact sea-urchin spermatozoa in artificial seawater, using 31P-NMR magnetization transfer. In inactive sperm, no CK-mediated exchange flux was detected, whereas in activated motile sperm, the forward pseudo-first-order rate constant was 0.13+/-0.04 s-1 at 10 degrees C, corresponding to a steady-state CK flux of 3.1+/-0.5 mM.s-1. Intracellular pH shifted from 6.6+/-0.1 to 7.6+/-0.1 upon activation. The phosphocreatine (PCr)/ATP and PCr/Pi ratios were only marginally reduced in activated sperm, whereas the estimated cytosolic free ADP concentration increased remarkably from 9 microM in quiescent, to 114 microM in activated spermatozoa. The elevation of CK flux upon sperm activation is discussed in the light of the proposition that in sea-urchin spermatozoa, which are fuelled entirely by oxidative phosphorylation, high-energy phosphate transport is mediated by a 'CK/PCr shuttle'.

Full Text

The Full Text of this article is available as a PDF (244.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessman S. P., Carpenter C. L. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–862. doi: 10.1146/annurev.bi.54.070185.004151. [DOI] [PubMed] [Google Scholar]
  2. Blum H., Balschi J. A., Johnson R. G., Jr Coupled in vivo activity of creatine phosphokinase and the membrane-bound (Na+,K+)-ATPase in the resting and stimulated electric organ of the electric fish Narcine brasiliensis. J Biol Chem. 1991 Jun 5;266(16):10254–10259. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brindle K. M., Blackledge M. J., Challiss R. A., Radda G. K. 31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo. Biochemistry. 1989 May 30;28(11):4887–4893. doi: 10.1021/bi00437a054. [DOI] [PubMed] [Google Scholar]
  5. Christen R., Schackmann R. W., Dahlquist F. W., Shapiro B. M. 31P-NMR analysis of sea urchin sperm activation. Reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp Cell Res. 1983 Nov;149(1):289–294. doi: 10.1016/0014-4827(83)90400-7. [DOI] [PubMed] [Google Scholar]
  6. Christen R., Schackmann R. W., Shapiro B. M. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem. 1982 Dec 25;257(24):14881–14890. [PubMed] [Google Scholar]
  7. Christen R., Schackmann R. W., Shapiro B. M. Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J Biol Chem. 1983 May 10;258(9):5392–5399. [PubMed] [Google Scholar]
  8. Fritz-Wolf K., Schnyder T., Wallimann T., Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996 May 23;381(6580):341–345. doi: 10.1038/381341a0. [DOI] [PubMed] [Google Scholar]
  9. Kaldis P., Stolz M., Wyss M., Zanolla E., Rothen-Rutishauser B., Vorherr T., Wallimann T. Identification of two distinctly localized mitochondrial creatine kinase isoenzymes in spermatozoa. J Cell Sci. 1996 Aug;109(Pt 8):2079–2088. doi: 10.1242/jcs.109.8.2079. [DOI] [PubMed] [Google Scholar]
  10. Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
  11. Matthews P. M., Bland J. L., Gadian D. G., Radda G. K. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta. 1982 Nov 17;721(3):312–320. doi: 10.1016/0167-4889(82)90084-2. [DOI] [PubMed] [Google Scholar]
  12. McAuliffe J. J., Perry S. B., Brooks E. E., Ingwall J. S. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart? Prog Clin Biol Res. 1989;315:581–592. [PubMed] [Google Scholar]
  13. McFarland E. W., Kushmerick M. J., Moerland T. S. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J. 1994 Nov;67(5):1912–1924. doi: 10.1016/S0006-3495(94)80674-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyer R. A., Brown T. R., Kushmerick M. J. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol. 1985 Mar;248(3 Pt 1):C279–C287. doi: 10.1152/ajpcell.1985.248.3.C279. [DOI] [PubMed] [Google Scholar]
  15. Meyer R. A., Sweeney H. L., Kushmerick M. J. A simple analysis of the "phosphocreatine shuttle". Am J Physiol. 1984 May;246(5 Pt 1):C365–C377. doi: 10.1152/ajpcell.1984.246.5.C365. [DOI] [PubMed] [Google Scholar]
  16. Morrison J. F., Cleland W. W. Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J Biol Chem. 1966 Feb 10;241(3):673–683. [PubMed] [Google Scholar]
  17. Quest A. F., Shapiro B. M. Membrane association of flagellar creatine kinase in the sperm phosphocreatine shuttle. J Biol Chem. 1991 Oct 15;266(29):19803–19811. [PubMed] [Google Scholar]
  18. Rydzy M., Deslauriers R., Smith I. C., Saunders J. K. Optimization of magnetization transfer measurements: statistical analysis by stochastic simulation. Application to creatine kinase kinetics. Magn Reson Med. 1990 Aug;15(2):260–274. doi: 10.1002/mrm.1910150209. [DOI] [PubMed] [Google Scholar]
  19. Shapiro B. M., Tombes R. M. A biochemical pathway for a cellular behaviour: pHi, phosphorylcreatine shuttles, and sperm motility. Bioessays. 1985 Sep;3(3):100–103. doi: 10.1002/bies.950030303. [DOI] [PubMed] [Google Scholar]
  20. Sweeney H. L. The importance of the creatine kinase reaction: the concept of metabolic capacitance. Med Sci Sports Exerc. 1994 Jan;26(1):30–36. [PubMed] [Google Scholar]
  21. Teague W. E., Jr, Dobson G. P. Effect of temperature on the creatine kinase equilibrium. J Biol Chem. 1992 Jul 15;267(20):14084–14093. [PubMed] [Google Scholar]
  22. Tombes R. M., Brokaw C. J., Shapiro B. M. Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J. 1987 Jul;52(1):75–86. doi: 10.1016/S0006-3495(87)83190-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tombes R. M., Shapiro B. M. Energy transport and cell polarity: relationship of phosphagen kinase activity to sperm function. J Exp Zool. 1989 Jul;251(1):82–90. doi: 10.1002/jez.1402510110. [DOI] [PubMed] [Google Scholar]
  24. Tombes R. M., Shapiro B. M. Enzyme termini of a phosphocreatine shuttle. Purification and characterization of two creatine kinase isozymes from sea urchin sperm. J Biol Chem. 1987 Nov 25;262(33):16011–16019. [PubMed] [Google Scholar]
  25. Tombes R. M., Shapiro B. M. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell. 1985 May;41(1):325–334. doi: 10.1016/0092-8674(85)90085-6. [DOI] [PubMed] [Google Scholar]
  26. Wallimann T. 31P-NMR-measured creatine kinase reaction flux in muscle: a caveat! J Muscle Res Cell Motil. 1996 Apr;17(2):177–181. doi: 10.1007/BF00124240. [DOI] [PubMed] [Google Scholar]
  27. Wallimann T., Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem. 1994 Apr-May;133-134:193–220. doi: 10.1007/BF01267955. [DOI] [PubMed] [Google Scholar]
  28. Wallimann T., Moser H., Zurbriggen B., Wegmann G., Eppenberger H. M. Creatine kinase isoenzymes in spermatozoa. J Muscle Res Cell Motil. 1986 Feb;7(1):25–34. doi: 10.1007/BF01756199. [DOI] [PubMed] [Google Scholar]
  29. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wyss M., Maughan D., Wallimann T. Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psammechinus miliaris) and man. Biochem J. 1995 Jul 1;309(Pt 1):255–261. doi: 10.1042/bj3090255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Deursen J., Ruitenbeek W., Heerschap A., Jap P., ter Laak H., Wieringa B. Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9091–9095. doi: 10.1073/pnas.91.19.9091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Dorsten F. A., Furter R., Bijkerk M., Wallimann T., Nicolay K. The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P-NMR. Biochim Biophys Acta. 1996 May 20;1274(1-2):59–66. doi: 10.1016/0005-2728(96)00010-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES