Abstract
The kinetics of the creatine kinase (CK) reaction were studied in suspensions of quiescent and active, intact sea-urchin spermatozoa in artificial seawater, using 31P-NMR magnetization transfer. In inactive sperm, no CK-mediated exchange flux was detected, whereas in activated motile sperm, the forward pseudo-first-order rate constant was 0.13+/-0.04 s-1 at 10 degrees C, corresponding to a steady-state CK flux of 3.1+/-0.5 mM.s-1. Intracellular pH shifted from 6.6+/-0.1 to 7.6+/-0.1 upon activation. The phosphocreatine (PCr)/ATP and PCr/Pi ratios were only marginally reduced in activated sperm, whereas the estimated cytosolic free ADP concentration increased remarkably from 9 microM in quiescent, to 114 microM in activated spermatozoa. The elevation of CK flux upon sperm activation is discussed in the light of the proposition that in sea-urchin spermatozoa, which are fuelled entirely by oxidative phosphorylation, high-energy phosphate transport is mediated by a 'CK/PCr shuttle'.
Full Text
The Full Text of this article is available as a PDF (244.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bessman S. P., Carpenter C. L. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–862. doi: 10.1146/annurev.bi.54.070185.004151. [DOI] [PubMed] [Google Scholar]
- Blum H., Balschi J. A., Johnson R. G., Jr Coupled in vivo activity of creatine phosphokinase and the membrane-bound (Na+,K+)-ATPase in the resting and stimulated electric organ of the electric fish Narcine brasiliensis. J Biol Chem. 1991 Jun 5;266(16):10254–10259. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brindle K. M., Blackledge M. J., Challiss R. A., Radda G. K. 31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo. Biochemistry. 1989 May 30;28(11):4887–4893. doi: 10.1021/bi00437a054. [DOI] [PubMed] [Google Scholar]
- Christen R., Schackmann R. W., Dahlquist F. W., Shapiro B. M. 31P-NMR analysis of sea urchin sperm activation. Reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp Cell Res. 1983 Nov;149(1):289–294. doi: 10.1016/0014-4827(83)90400-7. [DOI] [PubMed] [Google Scholar]
- Christen R., Schackmann R. W., Shapiro B. M. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem. 1982 Dec 25;257(24):14881–14890. [PubMed] [Google Scholar]
- Christen R., Schackmann R. W., Shapiro B. M. Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J Biol Chem. 1983 May 10;258(9):5392–5399. [PubMed] [Google Scholar]
- Fritz-Wolf K., Schnyder T., Wallimann T., Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996 May 23;381(6580):341–345. doi: 10.1038/381341a0. [DOI] [PubMed] [Google Scholar]
- Kaldis P., Stolz M., Wyss M., Zanolla E., Rothen-Rutishauser B., Vorherr T., Wallimann T. Identification of two distinctly localized mitochondrial creatine kinase isoenzymes in spermatozoa. J Cell Sci. 1996 Aug;109(Pt 8):2079–2088. doi: 10.1242/jcs.109.8.2079. [DOI] [PubMed] [Google Scholar]
- Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
- Matthews P. M., Bland J. L., Gadian D. G., Radda G. K. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta. 1982 Nov 17;721(3):312–320. doi: 10.1016/0167-4889(82)90084-2. [DOI] [PubMed] [Google Scholar]
- McAuliffe J. J., Perry S. B., Brooks E. E., Ingwall J. S. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart? Prog Clin Biol Res. 1989;315:581–592. [PubMed] [Google Scholar]
- McFarland E. W., Kushmerick M. J., Moerland T. S. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J. 1994 Nov;67(5):1912–1924. doi: 10.1016/S0006-3495(94)80674-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer R. A., Brown T. R., Kushmerick M. J. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol. 1985 Mar;248(3 Pt 1):C279–C287. doi: 10.1152/ajpcell.1985.248.3.C279. [DOI] [PubMed] [Google Scholar]
- Meyer R. A., Sweeney H. L., Kushmerick M. J. A simple analysis of the "phosphocreatine shuttle". Am J Physiol. 1984 May;246(5 Pt 1):C365–C377. doi: 10.1152/ajpcell.1984.246.5.C365. [DOI] [PubMed] [Google Scholar]
- Morrison J. F., Cleland W. W. Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J Biol Chem. 1966 Feb 10;241(3):673–683. [PubMed] [Google Scholar]
- Quest A. F., Shapiro B. M. Membrane association of flagellar creatine kinase in the sperm phosphocreatine shuttle. J Biol Chem. 1991 Oct 15;266(29):19803–19811. [PubMed] [Google Scholar]
- Rydzy M., Deslauriers R., Smith I. C., Saunders J. K. Optimization of magnetization transfer measurements: statistical analysis by stochastic simulation. Application to creatine kinase kinetics. Magn Reson Med. 1990 Aug;15(2):260–274. doi: 10.1002/mrm.1910150209. [DOI] [PubMed] [Google Scholar]
- Shapiro B. M., Tombes R. M. A biochemical pathway for a cellular behaviour: pHi, phosphorylcreatine shuttles, and sperm motility. Bioessays. 1985 Sep;3(3):100–103. doi: 10.1002/bies.950030303. [DOI] [PubMed] [Google Scholar]
- Sweeney H. L. The importance of the creatine kinase reaction: the concept of metabolic capacitance. Med Sci Sports Exerc. 1994 Jan;26(1):30–36. [PubMed] [Google Scholar]
- Teague W. E., Jr, Dobson G. P. Effect of temperature on the creatine kinase equilibrium. J Biol Chem. 1992 Jul 15;267(20):14084–14093. [PubMed] [Google Scholar]
- Tombes R. M., Brokaw C. J., Shapiro B. M. Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J. 1987 Jul;52(1):75–86. doi: 10.1016/S0006-3495(87)83190-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tombes R. M., Shapiro B. M. Energy transport and cell polarity: relationship of phosphagen kinase activity to sperm function. J Exp Zool. 1989 Jul;251(1):82–90. doi: 10.1002/jez.1402510110. [DOI] [PubMed] [Google Scholar]
- Tombes R. M., Shapiro B. M. Enzyme termini of a phosphocreatine shuttle. Purification and characterization of two creatine kinase isozymes from sea urchin sperm. J Biol Chem. 1987 Nov 25;262(33):16011–16019. [PubMed] [Google Scholar]
- Tombes R. M., Shapiro B. M. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell. 1985 May;41(1):325–334. doi: 10.1016/0092-8674(85)90085-6. [DOI] [PubMed] [Google Scholar]
- Wallimann T. 31P-NMR-measured creatine kinase reaction flux in muscle: a caveat! J Muscle Res Cell Motil. 1996 Apr;17(2):177–181. doi: 10.1007/BF00124240. [DOI] [PubMed] [Google Scholar]
- Wallimann T., Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem. 1994 Apr-May;133-134:193–220. doi: 10.1007/BF01267955. [DOI] [PubMed] [Google Scholar]
- Wallimann T., Moser H., Zurbriggen B., Wegmann G., Eppenberger H. M. Creatine kinase isoenzymes in spermatozoa. J Muscle Res Cell Motil. 1986 Feb;7(1):25–34. doi: 10.1007/BF01756199. [DOI] [PubMed] [Google Scholar]
- Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Maughan D., Wallimann T. Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psammechinus miliaris) and man. Biochem J. 1995 Jul 1;309(Pt 1):255–261. doi: 10.1042/bj3090255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Deursen J., Ruitenbeek W., Heerschap A., Jap P., ter Laak H., Wieringa B. Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9091–9095. doi: 10.1073/pnas.91.19.9091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Dorsten F. A., Furter R., Bijkerk M., Wallimann T., Nicolay K. The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P-NMR. Biochim Biophys Acta. 1996 May 20;1274(1-2):59–66. doi: 10.1016/0005-2728(96)00010-2. [DOI] [PubMed] [Google Scholar]