Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):423–428. doi: 10.1042/bj3250423

Fatty acyl-CoA-acyl-CoA-binding protein complexes activate the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum.

R Fulceri 1, J Knudsen 1, R Giunti 1, P Volpe 1, A Nori 1, A Benedetti 1
PMCID: PMC1218577  PMID: 9230123

Abstract

We previously reported that fatty acyl-CoA esters activate ryanodine receptor/Ca2+ release channels in a terminal cisternae fraction from rabbit skeletal muscle [Fulceri, Nori, Gamberucci, Volpe, Giunti and Benedetti (1994) Cell Calcium 15, 109-116]. Skeletal muscle cytosol contains a high-affinity fatty acyl-CoA-binding protein (ACBP) [Knudsen, Hojrup, Hansen, H.O., Hansen, H.F. and Roepstorff (1989) Biochem. J. 262, 513-519]. We show here that palmitoyl-CoA (PCoA) in a complex with a molar excess of bovine ACBP causes a discrete Ca2+ efflux or allows Ca2+ release from the Ca2+-preloaded terminal cisternae fraction by sub-optimal caffeine concentrations. Both effects were abolished by elevating the free [Mg2+] in the system, which inhibits the Ca2+ release channel activity. Sensitization towards caffeine was a function of both the concentration of the complex and the [PCoA]-to-[ACBP] ratio. In all experimental conditions the calculated free [PCoA] was no more than 50 nM, and such concentrations by themselves were inactive on Ca2+ release channels. The KD for PCoA binding was approx. 2 nM for bovine and yeast ACBP, and slightly higher (8 nM) for rat ACBP. The PCoA-rat ACBP complex behaved in the same manner as the PCoA-bovine ACBP complex, whereas the ester complexed with yeast ACBP was more active in activating/sensitizing Ca2+ efflux. A non-hydrolysable analogue of PCoA bound to (bovine) ACBP also sensitized the Ca2+ release channel towards caffeine. These findings indicate that fatty acyl-CoA-ACBP complexes either interact directly with one or more components in the terminal cisternae membranes or, through interaction with the component(s), donate the fatty acyl-CoA esters to high-affinity binding sites of the membrane, thus affecting (and possibly regulating) Ca2+ release channel activity.

Full Text

The Full Text of this article is available as a PDF (412.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. B., Warren G. L., Warren J. A. Mechanisms of exercise-induced muscle fibre injury. Sports Med. 1991 Sep;12(3):184–207. doi: 10.2165/00007256-199112030-00004. [DOI] [PubMed] [Google Scholar]
  2. Block B. A. Thermogenesis in muscle. Annu Rev Physiol. 1994;56:535–577. doi: 10.1146/annurev.ph.56.030194.002535. [DOI] [PubMed] [Google Scholar]
  3. Boerman M. H., Napoli J. L. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol. J Biol Chem. 1996 Mar 8;271(10):5610–5616. doi: 10.1074/jbc.271.10.5610. [DOI] [PubMed] [Google Scholar]
  4. Chini E. N., Dousa T. P. Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose. Am J Physiol. 1996 Feb;270(2 Pt 1):C530–C537. doi: 10.1152/ajpcell.1996.270.2.C530. [DOI] [PubMed] [Google Scholar]
  5. Chu A., Volpe P., Costello B., Fleischer S. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum. Biochemistry. 1986 Dec 16;25(25):8315–8324. doi: 10.1021/bi00373a028. [DOI] [PubMed] [Google Scholar]
  6. Connelly T., Ahern C., Sukhareva M., Coronado R. Removal of Mg2+ inhibition of cardiac ryanodine receptor by palmitoyl coenzyme A. FEBS Lett. 1994 Oct 3;352(3):285–290. doi: 10.1016/0014-5793(94)00969-4. [DOI] [PubMed] [Google Scholar]
  7. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  8. Duan C., Delp M. D., Hayes D. A., Delp P. D., Armstrong R. B. Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking. J Appl Physiol (1985) 1990 Mar;68(3):1241–1251. doi: 10.1152/jappl.1990.68.3.1241. [DOI] [PubMed] [Google Scholar]
  9. Dumonteil E., Barré H., Meissner G. Effects of palmitoyl carnitine and related metabolites on the avian Ca(2+)-ATPase and Ca2+ release channel. J Physiol. 1994 Aug 15;479(Pt 1):29–39. doi: 10.1113/jphysiol.1994.sp020275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Faergeman N. J., Sigurskjold B. W., Kragelund B. B., Andersen K. V., Knudsen J. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry. Biochemistry. 1996 Nov 12;35(45):14118–14126. doi: 10.1021/bi960545z. [DOI] [PubMed] [Google Scholar]
  11. Ferrington D. A., Reijneveld J. C., Bär P. R., Bigelow D. J. Activation of the sarcoplasmic reticulum Ca2+-ATPase induced by exercise. Biochim Biophys Acta. 1996 Mar 13;1279(2):203–213. doi: 10.1016/0005-2736(95)00235-9. [DOI] [PubMed] [Google Scholar]
  12. Fitts R. H., Courtright J. B., Kim D. H., Witzmann F. A. Muscle fatigue with prolonged exercise: contractile and biochemical alterations. Am J Physiol. 1982 Jan;242(1):C65–C73. doi: 10.1152/ajpcell.1982.242.1.C65. [DOI] [PubMed] [Google Scholar]
  13. Fulceri R., Nori A., Gamberucci A., Volpe P., Giunti R., Benedetti A. Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Calcium. 1994 Feb;15(2):109–116. doi: 10.1016/0143-4160(94)90049-3. [DOI] [PubMed] [Google Scholar]
  14. Hansen H. O., Andreasen P. H., Mandrup S., Kristiansen K., Knudsen J. Induction of acyl-CoA-binding protein and its mRNA in 3T3-L1 cells by insulin during preadipocyte-to-adipocyte differentiation. Biochem J. 1991 Jul 15;277(Pt 2):341–344. doi: 10.1042/bj2770341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knudsen J., Faergeman N. J., Skøtt H., Hummel R., Børsting C., Rose T. M., Andersen J. S., Højrup P., Roepstorff P., Kristiansen K. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J. 1994 Sep 1;302(Pt 2):479–485. doi: 10.1042/bj3020479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knudsen J., Højrup P., Hansen H. O., Hansen H. F., Roepstorff P. Acyl-CoA-binding protein in the rat. Purification, binding characteristics, tissue concentrations and amino acid sequence. Biochem J. 1989 Sep 1;262(2):513–519. doi: 10.1042/bj2620513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. MacLennan D. H., Phillips M. S. Malignant hyperthermia. Science. 1992 May 8;256(5058):789–794. doi: 10.1126/science.1589759. [DOI] [PubMed] [Google Scholar]
  19. Mandrup S., Hummel R., Ravn S., Jensen G., Andreasen P. H., Gregersen N., Knudsen J., Kristiansen K. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family. J Mol Biol. 1992 Dec 5;228(3):1011–1022. doi: 10.1016/0022-2836(92)90888-q. [DOI] [PubMed] [Google Scholar]
  20. Mandrup S., Jepsen R., Skøtt H., Rosendal J., Højrup P., Kristiansen K., Knudsen J. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem J. 1993 Mar 1;290(Pt 2):369–374. doi: 10.1042/bj2900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meissner G., Darling E., Eveleth J. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry. 1986 Jan 14;25(1):236–244. doi: 10.1021/bi00349a033. [DOI] [PubMed] [Google Scholar]
  22. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  23. Mickelson J. R., Louis C. F. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996 Apr;76(2):537–592. doi: 10.1152/physrev.1996.76.2.537. [DOI] [PubMed] [Google Scholar]
  24. Mikkelsen J., Højrup P., Nielsen P. F., Roepstorff P., Knudsen J. Amino acid sequence of acyl-CoA-binding protein from cow liver. Biochem J. 1987 Aug 1;245(3):857–861. doi: 10.1042/bj2450857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mikkelsen J., Knudsen J. Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J. 1987 Dec 15;248(3):709–714. doi: 10.1042/bj2480709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Molaparast-Saless F., Shrago E., Spennetta T. L., Donatello S., Kneeland L. M., Nellis S. H., Liedtke A. J. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle. Lipids. 1988 May;23(5):490–492. doi: 10.1007/BF02535525. [DOI] [PubMed] [Google Scholar]
  27. Ney D. M., Lasekan J. B., Spennetta T., Grahn M., Shrago E. Effect of dietary fat on individual long-chain fatty acyl-CoA esters in rat liver and skeletal muscle. Lipids. 1989 Mar;24(3):233–235. doi: 10.1007/BF02535241. [DOI] [PubMed] [Google Scholar]
  28. Ong D. E. Cellular transport and metabolism of vitamin A: roles of the cellular retinoid-binding proteins. Nutr Rev. 1994 Feb;52(2 Pt 2):S24–S31. doi: 10.1111/j.1753-4887.1994.tb01383.x. [DOI] [PubMed] [Google Scholar]
  29. Oram J. F., Wenger J. I., Neely J. R. Regulation of long chain fatty acid activation in heart muscle. J Biol Chem. 1975 Jan 10;250(1):73–78. [PubMed] [Google Scholar]
  30. Paulussen R. J., van der Logt C. P., Veerkamp J. H. Characterization and binding properties of fatty acid-binding proteins from human, pig, and rat heart. Arch Biochem Biophys. 1988 Aug 1;264(2):533–545. doi: 10.1016/0003-9861(88)90319-0. [DOI] [PubMed] [Google Scholar]
  31. Prinsen C. F., Veerkamp J. H. Fatty acid binding and conformational stability of mutants of human muscle fatty acid-binding protein. Biochem J. 1996 Feb 15;314(Pt 1):253–260. doi: 10.1042/bj3140253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rasmussen J. T., Faergeman N. J., Kristiansen K., Knudsen J. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis. Biochem J. 1994 Apr 1;299(Pt 1):165–170. doi: 10.1042/bj2990165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Requero M. A., Goñi F. M., Alonso A. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study. Biochemistry. 1995 Aug 22;34(33):10400–10405. doi: 10.1021/bi00033a011. [DOI] [PubMed] [Google Scholar]
  34. Rosendal J., Ertbjerg P., Knudsen J. Characterization of ligand binding to acyl-CoA-binding protein. Biochem J. 1993 Mar 1;290(Pt 2):321–326. doi: 10.1042/bj2900321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vladutiu G. D., Hogan K., Saponara I., Tassini L., Conroy J. Carnitine palmitoyl transferase deficiency in malignant hyperthermia. Muscle Nerve. 1993 May;16(5):485–491. doi: 10.1002/mus.880160509. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES