Abstract
We previously reported that fatty acyl-CoA esters activate ryanodine receptor/Ca2+ release channels in a terminal cisternae fraction from rabbit skeletal muscle [Fulceri, Nori, Gamberucci, Volpe, Giunti and Benedetti (1994) Cell Calcium 15, 109-116]. Skeletal muscle cytosol contains a high-affinity fatty acyl-CoA-binding protein (ACBP) [Knudsen, Hojrup, Hansen, H.O., Hansen, H.F. and Roepstorff (1989) Biochem. J. 262, 513-519]. We show here that palmitoyl-CoA (PCoA) in a complex with a molar excess of bovine ACBP causes a discrete Ca2+ efflux or allows Ca2+ release from the Ca2+-preloaded terminal cisternae fraction by sub-optimal caffeine concentrations. Both effects were abolished by elevating the free [Mg2+] in the system, which inhibits the Ca2+ release channel activity. Sensitization towards caffeine was a function of both the concentration of the complex and the [PCoA]-to-[ACBP] ratio. In all experimental conditions the calculated free [PCoA] was no more than 50 nM, and such concentrations by themselves were inactive on Ca2+ release channels. The KD for PCoA binding was approx. 2 nM for bovine and yeast ACBP, and slightly higher (8 nM) for rat ACBP. The PCoA-rat ACBP complex behaved in the same manner as the PCoA-bovine ACBP complex, whereas the ester complexed with yeast ACBP was more active in activating/sensitizing Ca2+ efflux. A non-hydrolysable analogue of PCoA bound to (bovine) ACBP also sensitized the Ca2+ release channel towards caffeine. These findings indicate that fatty acyl-CoA-ACBP complexes either interact directly with one or more components in the terminal cisternae membranes or, through interaction with the component(s), donate the fatty acyl-CoA esters to high-affinity binding sites of the membrane, thus affecting (and possibly regulating) Ca2+ release channel activity.
Full Text
The Full Text of this article is available as a PDF (412.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong R. B., Warren G. L., Warren J. A. Mechanisms of exercise-induced muscle fibre injury. Sports Med. 1991 Sep;12(3):184–207. doi: 10.2165/00007256-199112030-00004. [DOI] [PubMed] [Google Scholar]
- Block B. A. Thermogenesis in muscle. Annu Rev Physiol. 1994;56:535–577. doi: 10.1146/annurev.ph.56.030194.002535. [DOI] [PubMed] [Google Scholar]
- Boerman M. H., Napoli J. L. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol. J Biol Chem. 1996 Mar 8;271(10):5610–5616. doi: 10.1074/jbc.271.10.5610. [DOI] [PubMed] [Google Scholar]
- Chini E. N., Dousa T. P. Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose. Am J Physiol. 1996 Feb;270(2 Pt 1):C530–C537. doi: 10.1152/ajpcell.1996.270.2.C530. [DOI] [PubMed] [Google Scholar]
- Chu A., Volpe P., Costello B., Fleischer S. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum. Biochemistry. 1986 Dec 16;25(25):8315–8324. doi: 10.1021/bi00373a028. [DOI] [PubMed] [Google Scholar]
- Connelly T., Ahern C., Sukhareva M., Coronado R. Removal of Mg2+ inhibition of cardiac ryanodine receptor by palmitoyl coenzyme A. FEBS Lett. 1994 Oct 3;352(3):285–290. doi: 10.1016/0014-5793(94)00969-4. [DOI] [PubMed] [Google Scholar]
- Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
- Duan C., Delp M. D., Hayes D. A., Delp P. D., Armstrong R. B. Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking. J Appl Physiol (1985) 1990 Mar;68(3):1241–1251. doi: 10.1152/jappl.1990.68.3.1241. [DOI] [PubMed] [Google Scholar]
- Dumonteil E., Barré H., Meissner G. Effects of palmitoyl carnitine and related metabolites on the avian Ca(2+)-ATPase and Ca2+ release channel. J Physiol. 1994 Aug 15;479(Pt 1):29–39. doi: 10.1113/jphysiol.1994.sp020275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faergeman N. J., Sigurskjold B. W., Kragelund B. B., Andersen K. V., Knudsen J. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry. Biochemistry. 1996 Nov 12;35(45):14118–14126. doi: 10.1021/bi960545z. [DOI] [PubMed] [Google Scholar]
- Ferrington D. A., Reijneveld J. C., Bär P. R., Bigelow D. J. Activation of the sarcoplasmic reticulum Ca2+-ATPase induced by exercise. Biochim Biophys Acta. 1996 Mar 13;1279(2):203–213. doi: 10.1016/0005-2736(95)00235-9. [DOI] [PubMed] [Google Scholar]
- Fitts R. H., Courtright J. B., Kim D. H., Witzmann F. A. Muscle fatigue with prolonged exercise: contractile and biochemical alterations. Am J Physiol. 1982 Jan;242(1):C65–C73. doi: 10.1152/ajpcell.1982.242.1.C65. [DOI] [PubMed] [Google Scholar]
- Fulceri R., Nori A., Gamberucci A., Volpe P., Giunti R., Benedetti A. Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Calcium. 1994 Feb;15(2):109–116. doi: 10.1016/0143-4160(94)90049-3. [DOI] [PubMed] [Google Scholar]
- Hansen H. O., Andreasen P. H., Mandrup S., Kristiansen K., Knudsen J. Induction of acyl-CoA-binding protein and its mRNA in 3T3-L1 cells by insulin during preadipocyte-to-adipocyte differentiation. Biochem J. 1991 Jul 15;277(Pt 2):341–344. doi: 10.1042/bj2770341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knudsen J., Faergeman N. J., Skøtt H., Hummel R., Børsting C., Rose T. M., Andersen J. S., Højrup P., Roepstorff P., Kristiansen K. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J. 1994 Sep 1;302(Pt 2):479–485. doi: 10.1042/bj3020479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knudsen J., Højrup P., Hansen H. O., Hansen H. F., Roepstorff P. Acyl-CoA-binding protein in the rat. Purification, binding characteristics, tissue concentrations and amino acid sequence. Biochem J. 1989 Sep 1;262(2):513–519. doi: 10.1042/bj2620513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MacLennan D. H., Phillips M. S. Malignant hyperthermia. Science. 1992 May 8;256(5058):789–794. doi: 10.1126/science.1589759. [DOI] [PubMed] [Google Scholar]
- Mandrup S., Hummel R., Ravn S., Jensen G., Andreasen P. H., Gregersen N., Knudsen J., Kristiansen K. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family. J Mol Biol. 1992 Dec 5;228(3):1011–1022. doi: 10.1016/0022-2836(92)90888-q. [DOI] [PubMed] [Google Scholar]
- Mandrup S., Jepsen R., Skøtt H., Rosendal J., Højrup P., Kristiansen K., Knudsen J. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem J. 1993 Mar 1;290(Pt 2):369–374. doi: 10.1042/bj2900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G., Darling E., Eveleth J. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry. 1986 Jan 14;25(1):236–244. doi: 10.1021/bi00349a033. [DOI] [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Mickelson J. R., Louis C. F. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996 Apr;76(2):537–592. doi: 10.1152/physrev.1996.76.2.537. [DOI] [PubMed] [Google Scholar]
- Mikkelsen J., Højrup P., Nielsen P. F., Roepstorff P., Knudsen J. Amino acid sequence of acyl-CoA-binding protein from cow liver. Biochem J. 1987 Aug 1;245(3):857–861. doi: 10.1042/bj2450857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikkelsen J., Knudsen J. Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J. 1987 Dec 15;248(3):709–714. doi: 10.1042/bj2480709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molaparast-Saless F., Shrago E., Spennetta T. L., Donatello S., Kneeland L. M., Nellis S. H., Liedtke A. J. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle. Lipids. 1988 May;23(5):490–492. doi: 10.1007/BF02535525. [DOI] [PubMed] [Google Scholar]
- Ney D. M., Lasekan J. B., Spennetta T., Grahn M., Shrago E. Effect of dietary fat on individual long-chain fatty acyl-CoA esters in rat liver and skeletal muscle. Lipids. 1989 Mar;24(3):233–235. doi: 10.1007/BF02535241. [DOI] [PubMed] [Google Scholar]
- Ong D. E. Cellular transport and metabolism of vitamin A: roles of the cellular retinoid-binding proteins. Nutr Rev. 1994 Feb;52(2 Pt 2):S24–S31. doi: 10.1111/j.1753-4887.1994.tb01383.x. [DOI] [PubMed] [Google Scholar]
- Oram J. F., Wenger J. I., Neely J. R. Regulation of long chain fatty acid activation in heart muscle. J Biol Chem. 1975 Jan 10;250(1):73–78. [PubMed] [Google Scholar]
- Paulussen R. J., van der Logt C. P., Veerkamp J. H. Characterization and binding properties of fatty acid-binding proteins from human, pig, and rat heart. Arch Biochem Biophys. 1988 Aug 1;264(2):533–545. doi: 10.1016/0003-9861(88)90319-0. [DOI] [PubMed] [Google Scholar]
- Prinsen C. F., Veerkamp J. H. Fatty acid binding and conformational stability of mutants of human muscle fatty acid-binding protein. Biochem J. 1996 Feb 15;314(Pt 1):253–260. doi: 10.1042/bj3140253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen J. T., Faergeman N. J., Kristiansen K., Knudsen J. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis. Biochem J. 1994 Apr 1;299(Pt 1):165–170. doi: 10.1042/bj2990165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Requero M. A., Goñi F. M., Alonso A. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study. Biochemistry. 1995 Aug 22;34(33):10400–10405. doi: 10.1021/bi00033a011. [DOI] [PubMed] [Google Scholar]
- Rosendal J., Ertbjerg P., Knudsen J. Characterization of ligand binding to acyl-CoA-binding protein. Biochem J. 1993 Mar 1;290(Pt 2):321–326. doi: 10.1042/bj2900321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vladutiu G. D., Hogan K., Saponara I., Tassini L., Conroy J. Carnitine palmitoyl transferase deficiency in malignant hyperthermia. Muscle Nerve. 1993 May;16(5):485–491. doi: 10.1002/mus.880160509. [DOI] [PubMed] [Google Scholar]