Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):429–434. doi: 10.1042/bj3250429

Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

A Yamamoto 1, Y Kawashima 1
PMCID: PMC1218578  PMID: 9230124

Abstract

The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver.

Full Text

The Full Text of this article is available as a PDF (282.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitio A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem. 1978 Apr;85(2):488–491. doi: 10.1016/0003-2697(78)90245-2. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bergstrom J. D., Reitz R. C. Studies on carnitine palmitoyl transferase: the similar nature of CPTi (inner form) and CPTo (outer form). Arch Biochem Biophys. 1980 Oct 1;204(1):71–79. doi: 10.1016/0003-9861(80)90008-9. [DOI] [PubMed] [Google Scholar]
  4. Borges T., Robertson L. W., Peterson R. E., Glauert H. P. Dose-related effects of perfluorodecanoic acid on growth, feed intake and hepatic peroxisomal beta-oxidation. Arch Toxicol. 1992;66(1):18–22. doi: 10.1007/BF02307265. [DOI] [PubMed] [Google Scholar]
  5. COCHIN J., AXELROD J. Biochemical and pharmacological changes in the rat following chronic administration of morphine nalorphine and normorphine. J Pharmacol Exp Ther. 1959 Feb;125(2):105–110. [PubMed] [Google Scholar]
  6. George M. E., Andersen M. E. Toxic effects of nonadecafluoro-n-decanoic acid in rats. Toxicol Appl Pharmacol. 1986 Sep 15;85(2):169–180. doi: 10.1016/0041-008x(86)90110-9. [DOI] [PubMed] [Google Scholar]
  7. Imai Y., Ito A., Sato R. Evidence for biochemically different types of vesicles in the hepatic microsomal fraction. J Biochem. 1966 Oct;60(4):417–428. doi: 10.1093/oxfordjournals.jbchem.a128453. [DOI] [PubMed] [Google Scholar]
  8. Katoh H., Nakajima S., Kawashima Y., Kozuka H., Uchiyama M. Induction of rat hepatic long-chain acyl-CoA hydrolases by various peroxisome proliferators. Biochem Pharmacol. 1984 Apr 1;33(7):1081–1085. doi: 10.1016/0006-2952(84)90517-3. [DOI] [PubMed] [Google Scholar]
  9. Kawashima Y., Hanioka N., Matsumura M., Kozuka H. Induction of microsomal stearoyl-CoA desaturation by the administration of various peroxisome proliferators. Biochim Biophys Acta. 1983 Jul 12;752(2):259–264. [PubMed] [Google Scholar]
  10. Kawashima Y., Kobayashi H., Miura H., Kozuka H. Characterization of hepatic responses of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels. Toxicology. 1995 May 23;99(3):169–178. doi: 10.1016/0300-483x(95)03027-d. [DOI] [PubMed] [Google Scholar]
  11. Kawashima Y., Kozuka H. Increased activity of stearoyl-CoA desaturation in liver from rat fed clofibric acid. Biochim Biophys Acta. 1982 Dec 13;713(3):622–628. [PubMed] [Google Scholar]
  12. Kawashima Y., Mizuguchi H., Kozuka H. Modulation by dietary oils and clofibric acid of arachidonic acid content in phosphatidylcholine in liver and kidney of rat: effects on prostaglandin formation in kidney. Biochim Biophys Acta. 1994 Jan 3;1210(2):187–194. doi: 10.1016/0005-2760(94)90120-1. [DOI] [PubMed] [Google Scholar]
  13. Kawashima Y., Musoh K., Kozuka H. Peroxisome proliferators enhance linoleic acid metabolism in rat liver. Increased biosynthesis of omega 6 polyunsaturated fatty acids. J Biol Chem. 1990 Jun 5;265(16):9170–9175. [PubMed] [Google Scholar]
  14. Kawashima Y., Uy-Yu N., Kozuka H. Sex-related differences in the enhancing effects of perfluoro-octanoic acid on stearoyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol. Biochem J. 1989 Nov 1;263(3):897–904. doi: 10.1042/bj2630897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ntambi J. M. The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res. 1995;34(2):139–150. doi: 10.1016/0163-7827(94)00010-j. [DOI] [PubMed] [Google Scholar]
  18. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  19. Olson C. T., Andersen M. E. The acute toxicity of perfluorooctanoic and perfluorodecanoic acids in male rats and effects on tissue fatty acids. Toxicol Appl Pharmacol. 1983 Sep 30;70(3):362–372. doi: 10.1016/0041-008x(83)90154-0. [DOI] [PubMed] [Google Scholar]
  20. Oshino N., Imai Y., Sato R. A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J Biochem. 1971 Jan;69(1):155–167. doi: 10.1093/oxfordjournals.jbchem.a129444. [DOI] [PubMed] [Google Scholar]
  21. Oshino N., Imai Y., Sato R. Electron-transfer mechanism associated with fatty acid desaturation catalyzed by liver microsomes. Biochim Biophys Acta. 1966 Oct 17;128(1):13–27. doi: 10.1016/0926-6593(66)90137-8. [DOI] [PubMed] [Google Scholar]
  22. Oshino N., Sato R. Stimulation by phenols of the reoxidation microsomal bound cytochrome b5 and its implication to fatty acid desaturation. J Biochem. 1971 Jan;69(1):169–180. doi: 10.1093/oxfordjournals.jbchem.a129445. [DOI] [PubMed] [Google Scholar]
  23. Rogers M. J., Strittmatter P. Lipid-protein interactions in the reconstitution of the microsomal reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase system. J Biol Chem. 1973 Feb 10;248(3):800–806. [PubMed] [Google Scholar]
  24. Schoonjans K., Staels B., Grimaldi P., Auwerx J. Acyl-CoA synthetase mRNA expression is controlled by fibric-acid derivatives, feeding and liver proliferation. Eur J Biochem. 1993 Sep 1;216(2):615–622. doi: 10.1111/j.1432-1033.1993.tb18181.x. [DOI] [PubMed] [Google Scholar]
  25. Sharma R., Lake B. G., Foster J., Gibson G. G. Microsomal cytochrome P-452 induction and peroxisome proliferation by hypolipidaemic agents in rat liver. A mechanistic inter-relationship. Biochem Pharmacol. 1988 Apr 1;37(7):1193–1201. doi: 10.1016/0006-2952(88)90770-8. [DOI] [PubMed] [Google Scholar]
  26. Strittmatter P., Rogers M. J., Spatz L. The binding of cytochrome b 5 to liver microsomes. J Biol Chem. 1972 Nov 25;247(22):7188–7194. [PubMed] [Google Scholar]
  27. Takesue S., Omura T. Purification and properties of NADH-cytochrome b5 reductase solubilized by lysosomes from rat liver microsomes. J Biochem. 1970 Feb;67(2):267–276. doi: 10.1093/oxfordjournals.jbchem.a129250. [DOI] [PubMed] [Google Scholar]
  28. Van Rafelghem M. J., Andersen M. E. The effects of perfluorodecanoic acid on hepatic stearoyl-coenzyme A desaturase and mixed function oxidase activities in rats. Fundam Appl Toxicol. 1988 Oct;11(3):503–510. [PubMed] [Google Scholar]
  29. Van Rafelghem M. J., Vanden Heuvel J. P., Menahan L. A., Peterson R. E. Perfluorodecanoic acid and lipid metabolism in the rat. Lipids. 1988 Jul;23(7):671–678. doi: 10.1007/BF02535666. [DOI] [PubMed] [Google Scholar]
  30. Vanden Heuvel J. P., Sterchele P. F., Nesbit D. J., Peterson R. E. Coordinate induction of acyl-CoA binding protein, fatty acid binding protein and peroxisomal beta-oxidation by peroxisome proliferators. Biochim Biophys Acta. 1993 Jun 6;1177(2):183–190. doi: 10.1016/0167-4889(93)90039-r. [DOI] [PubMed] [Google Scholar]
  31. Veerkamp J. H., Maatman R. G. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res. 1995;34(1):17–52. doi: 10.1016/0163-7827(94)00005-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES