Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):449–454. doi: 10.1042/bj3250449

Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase.

K Bedecs 1, N Elbaz 1, M Sutren 1, M Masson 1, C Susini 1, A D Strosberg 1, C Nahmias 1
PMCID: PMC1218581  PMID: 9230127

Abstract

Angiotensin II type 2 (AT2) receptors are involved in the inhibition of cell proliferation as well as in apoptosis and neuronal differentiation, through intracellular signalling pathways that remain poorly defined. The present study examines the effect of AT2-receptor stimulation on growth-factor-induced pathways leading to the activation of mitogen-activated protein (MAP) kinases. In N1E-115 neuroblastoma cells, AT2 receptors inhibit the activity of MAP kinases induced by serum as well as by epidermal growth factor. The inhibitory effect of angiotensin II (Ang II) is rapid and transient, and affects both ERK1 and ERK2 (extracellular signal-related protein kinase) isoforms of the enzyme. AT2-mediated MAP kinase inactivation is not sensitive to pertussis toxin or okadaic acid, but involves a vanadate-sensitive protein tyrosine phosphatase (PTP). Expression of MAP kinase phosphatase-1 (MKP-1) is not significantly modified upon AT2-receptor activation, and insensitivity to actinomycin D also rules out transcriptional induction of other MKPs as a possible mechanism for AT2-mediated inactivation of MAP kinases. In addition, we report here that both in N1E-115 cells and in Chinese hamster ovary cells expressing recombinant human AT2 receptors, Ang II rapidly stimulates the catalytic activity of SHP-1, a soluble PTP that has been implicated in termination of signalling by cytokine and growth-factor receptors. These findings thus demonstrate functional negative cross-talk between heptahelical AT2 receptors and receptor tyrosine kinases, and suggest that SHP-1 tyrosine phosphatase is an early transducer of the AT2 receptor signalling pathway.

Full Text

The Full Text of this article is available as a PDF (376.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Fischer E. H., Ihle J., Imai K., Jirik F., Neel B., Pawson T., Shen S., Thomas M., Ullrich A. Mammalian SH2-containing protein tyrosine phosphatases. Cell. 1996 Apr 5;85(1):15–15. doi: 10.1016/s0092-8674(00)81077-6. [DOI] [PubMed] [Google Scholar]
  2. Agbotounou W. K., Mousset S., Piperno S., Pierre M., Jacquemin-Sablon A., Pierre J. Activation of the mitogen-activated protein kinase cascade by tyrphostin (RG 50864). Biochem Pharmacol. 1994 Aug 3;48(3):505–515. doi: 10.1016/0006-2952(94)90280-1. [DOI] [PubMed] [Google Scholar]
  3. Alessi D. R., Gomez N., Moorhead G., Lewis T., Keyse S. M., Cohen P. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol. 1995 Mar 1;5(3):283–295. doi: 10.1016/s0960-9822(95)00059-5. [DOI] [PubMed] [Google Scholar]
  4. Bhat G. J., Thekkumkara T. J., Thomas W. G., Conrad K. M., Baker K. M. Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J Biol Chem. 1994 Dec 16;269(50):31443–31449. [PubMed] [Google Scholar]
  5. Bottari S. P., King I. N., Reichlin S., Dahlstroem I., Lydon N., de Gasparo M. The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun. 1992 Feb 28;183(1):206–211. doi: 10.1016/0006-291x(92)91629-5. [DOI] [PubMed] [Google Scholar]
  6. Brechler V., Reichlin S., De Gasparo M., Bottari S. P. Angiotensin II stimulates protein tyrosine phosphatase activity through a G-protein independent mechanism. Receptors Channels. 1994;2(2):89–98. [PubMed] [Google Scholar]
  7. Buisson B., Laflamme L., Bottari S. P., de Gasparo M., Gallo-Payet N., Payet M. D. A G protein is involved in the angiotensin AT2 receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J Biol Chem. 1995 Jan 27;270(4):1670–1674. doi: 10.1074/jbc.270.4.1670. [DOI] [PubMed] [Google Scholar]
  8. Buscail L., Estève J. P., Saint-Laurent N., Bertrand V., Reisine T., O'Carroll A. M., Bell G. I., Schally A. V., Vaysse N., Susini C. Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1580–1584. doi: 10.1073/pnas.92.5.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cambillau C., Rauly I., Sarfati P., Saint-Laurent N., Esteve J. P., Fanjul M., Svoboda M., Prats H., Hollande E., Vaysse N. Regulation of the src homology 2 domain-containing protein tyrosine phosphatase PTP1C by glucocorticoids in rat pancreatic AR42J cells. Endocrinology. 1995 Dec;136(12):5476–5484. doi: 10.1210/endo.136.12.7588298. [DOI] [PubMed] [Google Scholar]
  10. Creuzet C., Loeb J., Barbin G. Fibroblast growth factors stimulate protein tyrosine phosphorylation and mitogen-activated protein kinase activity in primary cultures of hippocampal neurons. J Neurochem. 1995 Apr;64(4):1541–1547. doi: 10.1046/j.1471-4159.1995.64041541.x. [DOI] [PubMed] [Google Scholar]
  11. D'Ambrosio D., Hippen K. L., Minskoff S. A., Mellman I., Pani G., Siminovitch K. A., Cambier J. C. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science. 1995 Apr 14;268(5208):293–297. doi: 10.1126/science.7716523. [DOI] [PubMed] [Google Scholar]
  12. David M., Chen H. E., Goelz S., Larner A. C., Neel B. G. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1995 Dec;15(12):7050–7058. doi: 10.1128/mcb.15.12.7050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duff J. L., Marrero M. B., Paxton W. G., Charles C. H., Lau L. F., Bernstein K. E., Berk B. C. Angiotensin II induces 3CH134, a protein-tyrosine phosphatase, in vascular smooth muscle cells. J Biol Chem. 1993 Dec 15;268(35):26037–26040. [PubMed] [Google Scholar]
  14. Florio T., Pan M. G., Newman B., Hershberger R. E., Civelli O., Stork P. J. Dopaminergic inhibition of DNA synthesis in pituitary tumor cells is associated with phosphotyrosine phosphatase activity. J Biol Chem. 1992 Dec 5;267(34):24169–24172. [PubMed] [Google Scholar]
  15. Giasson E., Meloche S. Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem. 1995 Mar 10;270(10):5225–5231. doi: 10.1074/jbc.270.10.5225. [DOI] [PubMed] [Google Scholar]
  16. Hein L., Barsh G. S., Pratt R. E., Dzau V. J., Kobilka B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. doi: 10.1038/377744a0. [DOI] [PubMed] [Google Scholar]
  17. Huang X. C., Richards E. M., Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem. 1996 Jun 28;271(26):15635–15641. doi: 10.1074/jbc.271.26.15635. [DOI] [PubMed] [Google Scholar]
  18. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  19. Ichiki T., Labosky P. A., Shiota C., Okuyama S., Imagawa Y., Fogo A., Niimura F., Ichikawa I., Hogan B. L., Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. doi: 10.1038/377748a0. [DOI] [PubMed] [Google Scholar]
  20. Imboden J. B., Koretsky G. A. Intracellular signalling. Switching off signals. Curr Biol. 1995 Jul 1;5(7):727–729. doi: 10.1016/s0960-9822(95)00145-x. [DOI] [PubMed] [Google Scholar]
  21. Janiak P., Pillon A., Prost J. F., Vilaine J. P. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension. 1992 Dec;20(6):737–745. doi: 10.1161/01.hyp.20.6.737. [DOI] [PubMed] [Google Scholar]
  22. Kahan C., Seuwen K., Meloche S., Pouysségur J. Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J Biol Chem. 1992 Jul 5;267(19):13369–13375. [PubMed] [Google Scholar]
  23. Kang J., Richards E. M., Posner P., Sumners C. Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment. Am J Physiol. 1995 Jan;268(1 Pt 1):C278–C282. doi: 10.1152/ajpcell.1995.268.1.C278. [DOI] [PubMed] [Google Scholar]
  24. Klingmüller U., Lorenz U., Cantley L. C., Neel B. G., Lodish H. F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995 Mar 10;80(5):729–738. doi: 10.1016/0092-8674(95)90351-8. [DOI] [PubMed] [Google Scholar]
  25. Kozlowski M., Mlinaric-Rascan I., Feng G. S., Shen R., Pawson T., Siminovitch K. A. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med. 1993 Dec 1;178(6):2157–2163. doi: 10.1084/jem.178.6.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laflamme L., Gasparo M., Gallo J. M., Payet M. D., Gallo-Payet N. Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells. Effect counteracted by the AT1 receptors. J Biol Chem. 1996 Sep 13;271(37):22729–22735. doi: 10.1074/jbc.271.37.22729. [DOI] [PubMed] [Google Scholar]
  27. Lau L. F., Nathans D. Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J. 1985 Dec 1;4(12):3145–3151. doi: 10.1002/j.1460-2075.1985.tb04057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lazard D., Briend-Sutren M. M., Villageois P., Mattei M. G., Strosberg A. D., Nahmias C. Molecular characterization and chromosome localization of a human angiotensin II AT2 receptor gene highly expressed in fetal tissues. Receptors Channels. 1994;2(4):271–280. [PubMed] [Google Scholar]
  29. Levy B. I., Benessiano J., Henrion D., Caputo L., Heymes C., Duriez M., Poitevin P., Samuel J. L. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest. 1996 Jul 15;98(2):418–425. doi: 10.1172/JCI118807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Linseman D. A., Benjamin C. W., Jones D. A. Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem. 1995 May 26;270(21):12563–12568. doi: 10.1074/jbc.270.21.12563. [DOI] [PubMed] [Google Scholar]
  31. Lo M., Liu K. L., Lantelme P., Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. J Clin Invest. 1995 Mar;95(3):1394–1397. doi: 10.1172/JCI117792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marrero M. B., Schieffer B., Paxton W. G., Heerdt L., Berk B. C., Delafontaine P., Bernstein K. E. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995 May 18;375(6528):247–250. doi: 10.1038/375247a0. [DOI] [PubMed] [Google Scholar]
  33. Matozaki T., Uchida T., Fujioka Y., Kasuga M. Src kinase tyrosine phosphorylates PTP1C, a protein tyrosine phosphatase containing Src homology-2 domains that down-regulates cell proliferation. Biochem Biophys Res Commun. 1994 Oct 28;204(2):874–881. doi: 10.1006/bbrc.1994.2541. [DOI] [PubMed] [Google Scholar]
  34. Misra-Press A., Rim C. S., Yao H., Roberson M. S., Stork P. J. A novel mitogen-activated protein kinase phosphatase. Structure, expression, and regulation. J Biol Chem. 1995 Jun 16;270(24):14587–14596. doi: 10.1074/jbc.270.24.14587. [DOI] [PubMed] [Google Scholar]
  35. Molloy C. J., Taylor D. S., Weber H. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem. 1993 Apr 5;268(10):7338–7345. [PubMed] [Google Scholar]
  36. Mourey R. J., Vega Q. C., Campbell J. S., Wenderoth M. P., Hauschka S. D., Krebs E. G., Dixon J. E. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J Biol Chem. 1996 Feb 16;271(7):3795–3802. doi: 10.1074/jbc.271.7.3795. [DOI] [PubMed] [Google Scholar]
  37. Muda M., Boschert U., Dickinson R., Martinou J. C., Martinou I., Camps M., Schlegel W., Arkinstall S. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem. 1996 Feb 23;271(8):4319–4326. doi: 10.1074/jbc.271.8.4319. [DOI] [PubMed] [Google Scholar]
  38. Nahmias C., Blin N., Elalouf J. M., Mattei M. G., Strosberg A. D., Emorine L. J. Molecular characterization of the mouse beta 3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 1991 Dec;10(12):3721–3727. doi: 10.1002/j.1460-2075.1991.tb04940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nahmias C., Cazaubon S. M., Briend-Sutren M. M., Lazard D., Villageois P., Strosberg A. D. Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphorylation in N1E-115 neuroblastoma cells. Biochem J. 1995 Feb 15;306(Pt 1):87–92. doi: 10.1042/bj3060087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nahmias C., Strosberg A. D. The angiotensin AT2 receptor: searching for signal-transduction pathways and physiological function. Trends Pharmacol Sci. 1995 Jul;16(7):223–225. doi: 10.1016/s0165-6147(00)89030-6. [DOI] [PubMed] [Google Scholar]
  41. Nakajima M., Hutchinson H. G., Fujinaga M., Hayashida W., Morishita R., Zhang L., Horiuchi M., Pratt R. E., Dzau V. J. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10663–10667. doi: 10.1073/pnas.92.23.10663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ozawa Y., Suzuki Y., Murakami K., Miyazaki H. The angiotensin II type 2 receptor primarily inhibits cell growth via pertussis toxin-sensitive G proteins. Biochem Biophys Res Commun. 1996 Nov 12;228(2):328–333. doi: 10.1006/bbrc.1996.1661. [DOI] [PubMed] [Google Scholar]
  43. Pan M. G., Florio T., Stork P. J. G protein activation of a hormone-stimulated phosphatase in human tumor cells. Science. 1992 May 22;256(5060):1215–1217. doi: 10.1126/science.256.5060.1215. [DOI] [PubMed] [Google Scholar]
  44. Pani G., Fischer K. D., Mlinaric-Rascan I., Siminovitch K. A. Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J Exp Med. 1996 Sep 1;184(3):839–852. doi: 10.1084/jem.184.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Plas D. R., Johnson R., Pingel J. T., Matthews R. J., Dalton M., Roy G., Chan A. C., Thomas M. L. Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science. 1996 May 24;272(5265):1173–1176. doi: 10.1126/science.272.5265.1173. [DOI] [PubMed] [Google Scholar]
  46. Srikant C. B., Shen S. H. Octapeptide somatostatin analog SMS 201-995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells. Endocrinology. 1996 Aug;137(8):3461–3468. doi: 10.1210/endo.137.8.8754775. [DOI] [PubMed] [Google Scholar]
  47. Stoll M., Steckelings U. M., Paul M., Bottari S. P., Metzger R., Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest. 1995 Feb;95(2):651–657. doi: 10.1172/JCI117710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Su L., Zhao Z., Bouchard P., Banville D., Fischer E. H., Krebs E. G., Shen S. H. Positive effect of overexpressed protein-tyrosine phosphatase PTP1C on mitogen-activated signaling in 293 cells. J Biol Chem. 1996 Apr 26;271(17):10385–10390. doi: 10.1074/jbc.271.17.10385. [DOI] [PubMed] [Google Scholar]
  49. Sun H., Charles C. H., Lau L. F., Tonks N. K. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell. 1993 Nov 5;75(3):487–493. doi: 10.1016/0092-8674(93)90383-2. [DOI] [PubMed] [Google Scholar]
  50. Tomic S., Greiser U., Lammers R., Kharitonenkov A., Imyanitov E., Ullrich A., Böhmer F. D. Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem. 1995 Sep 8;270(36):21277–21284. doi: 10.1074/jbc.270.36.21277. [DOI] [PubMed] [Google Scholar]
  51. Vambutas V., Kaplan D. R., Sells M. A., Chernoff J. Nerve growth factor stimulates tyrosine phosphorylation and activation of Src homology-containing protein-tyrosine phosphatase 1 in PC12 cells. J Biol Chem. 1995 Oct 27;270(43):25629–25633. doi: 10.1074/jbc.270.43.25629. [DOI] [PubMed] [Google Scholar]
  52. Yamada T., Horiuchi M., Dzau V. J. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):156–160. doi: 10.1073/pnas.93.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yi T., Ihle J. N. Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Mol Cell Biol. 1993 Jun;13(6):3350–3358. doi: 10.1128/mcb.13.6.3350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yi T., Mui A. L., Krystal G., Ihle J. N. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol. 1993 Dec;13(12):7577–7586. doi: 10.1128/mcb.13.12.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zeggari M., Esteve J. P., Rauly I., Cambillau C., Mazarguil H., Dufresne M., Pradayrol L., Chayvialle J. A., Vaysse N., Susini C. Co-purification of a protein tyrosine phosphatase with activated somatostatin receptors from rat pancreatic acinar membranes. Biochem J. 1994 Oct 15;303(Pt 2):441–448. doi: 10.1042/bj3030441. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES