Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):455–463. doi: 10.1042/bj3250455

Ca2+-dependent interaction of the growth-associated protein GAP-43 with the synaptic core complex.

T Haruta 1, N Takami 1, M Ohmura 1, Y Misumi 1, Y Ikehara 1
PMCID: PMC1218582  PMID: 9230128

Abstract

The synaptic vesicle exocytosis occurs by a highly regulated mechanism: syntaxin and 25 kDa synaptosome-associated protein (SNAP-25) are assembled with vesicle-associated membrane protein (VAMP) to form a synaptic core complex and then synaptotagmin participates as a Ca2+ sensor in the final step of membrane fusion. The 43 kDa growth-associated protein GAP-43 is a nerve-specific protein that is predominantly localized in the axonal growth cones and presynaptic terminal membrane. In the present study we have examined a possible interaction of GAP-43 with components involved in the exocytosis. GAP-43 was found to interact with syntaxin, SNAP-25 and VAMP in rat brain tissues and nerve growth factor-dependently differentiated PC12 cells, but not in undifferentiated PC12 cells. GAP-43 also interacted with synaptotagmin and calmodulin. These interactions of GAP-43 could be detected only when chemical cross-linking of proteins was performed before they were solubilized from the membranes with detergents, in contrast with the interaction of the synaptic core complex, which was detected without cross-linking. Experiments in vitro showed that the interaction of GAP-43 with these proteins occurred Ca2+-dependently; its maximum binding with the core complex was observed at 100 microM Ca2+, whereas that of syntaxin with synaptotagmin was at 200 microM Ca2+. These values of Ca2+ concentration are close to that required for the Ca2+-dependent release of neurotransmitters. Furthermore we observed that the interaction in vitro of GAP-43 with the synaptic core complex was coupled with protein kinase C-mediated phosphorylation of GAP-43. Taken together, our results suggest a novel function of GAP-43 that is involved in the Ca2+-dependent fusion of synaptic vesicles.

Full Text

The Full Text of this article is available as a PDF (486.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aigner L., Arber S., Kapfhammer J. P., Laux T., Schneider C., Botteri F., Brenner H. R., Caroni P. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell. 1995 Oct 20;83(2):269–278. doi: 10.1016/0092-8674(95)90168-x. [DOI] [PubMed] [Google Scholar]
  2. Aigner L., Caroni P. Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J Cell Biol. 1995 Feb;128(4):647–660. doi: 10.1083/jcb.128.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alexander K. A., Cimler B. M., Meier K. E., Storm D. R. Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein. J Biol Chem. 1987 May 5;262(13):6108–6113. [PubMed] [Google Scholar]
  4. Alexander K. A., Wakim B. T., Doyle G. S., Walsh K. A., Storm D. R. Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. J Biol Chem. 1988 Jun 5;263(16):7544–7549. [PubMed] [Google Scholar]
  5. Baetge E. E., Hammang J. P. Neurite outgrowth in PC12 cells deficient in GAP-43. Neuron. 1991 Jan;6(1):21–30. doi: 10.1016/0896-6273(91)90118-j. [DOI] [PubMed] [Google Scholar]
  6. Basi G. S., Jacobson R. D., Virág I., Schilling J., Skene J. H. Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell. 1987 Jun 19;49(6):785–791. doi: 10.1016/0092-8674(87)90616-7. [DOI] [PubMed] [Google Scholar]
  7. Bennett M. K., Calakos N., Scheller R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science. 1992 Jul 10;257(5067):255–259. doi: 10.1126/science.1321498. [DOI] [PubMed] [Google Scholar]
  8. Burgoyne R. D., Morgan A. Regulated exocytosis. Biochem J. 1993 Jul 15;293(Pt 2):305–316. doi: 10.1042/bj2930305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chapman E. R., Hanson P. I., An S., Jahn R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem. 1995 Oct 6;270(40):23667–23671. doi: 10.1074/jbc.270.40.23667. [DOI] [PubMed] [Google Scholar]
  10. Coggins P. J., Zwiers H. B-50 (GAP-43): biochemistry and functional neurochemistry of a neuron-specific phosphoprotein. J Neurochem. 1991 Apr;56(4):1095–1106. doi: 10.1111/j.1471-4159.1991.tb11398.x. [DOI] [PubMed] [Google Scholar]
  11. Colley P. A., Routtenberg A. Long-term potentiation as synaptic dialogue. Brain Res Brain Res Rev. 1993 Jan-Apr;18(1):115–122. doi: 10.1016/0165-0173(93)90009-o. [DOI] [PubMed] [Google Scholar]
  12. De Graan P. N., Oestreicher A. B., De Wit M., Kroef M., Schrama L. H., Gispen W. H. Evidence for the binding of calmodulin to endogenous B-50 (GAP-43) in native synaptosomal plasma membranes. J Neurochem. 1990 Dec;55(6):2139–2141. doi: 10.1111/j.1471-4159.1990.tb05808.x. [DOI] [PubMed] [Google Scholar]
  13. De la Monte S. M., Federoff H. J., Ng S. C., Grabczyk E., Fishman M. C. GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain Res Dev Brain Res. 1989 Apr 1;46(2):161–168. doi: 10.1016/0165-3806(89)90279-4. [DOI] [PubMed] [Google Scholar]
  14. Dekker L. V., De Graan P. N., De Wit M., Hens J. J., Gispen W. H. Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes. J Neurochem. 1990 May;54(5):1645–1652. doi: 10.1111/j.1471-4159.1990.tb01217.x. [DOI] [PubMed] [Google Scholar]
  15. Dekker L. V., De Graan P. N., Oestreicher A. B., Versteeg D. H., Gispen W. H. Inhibition of noradrenaline release by antibodies to B-50 (GAP-43). Nature. 1989 Nov 2;342(6245):74–76. doi: 10.1038/342074a0. [DOI] [PubMed] [Google Scholar]
  16. Dekker L. V., De Graan P. N., Pijnappel P., Oestreicher A. B., Gispen W. H. Noradrenaline release from streptolysin O-permeated rat cortical synaptosomes: effects of calcium, phorbol esters, protein kinase inhibitors, and antibodies to the neuron-specific protein kinase C substrate B-50 (GAP-43). J Neurochem. 1991 Apr;56(4):1146–1153. doi: 10.1111/j.1471-4159.1991.tb11404.x. [DOI] [PubMed] [Google Scholar]
  17. Ferro-Novick S., Jahn R. Vesicle fusion from yeast to man. Nature. 1994 Jul 21;370(6486):191–193. doi: 10.1038/370191a0. [DOI] [PubMed] [Google Scholar]
  18. Gamby C., Waage M. C., Allen R. G., Baizer L. Growth-associated protein-43 (GAP-43) facilitates peptide hormone secretion in mouse anterior pituitary AtT-20 cells. J Biol Chem. 1996 Apr 26;271(17):10023–10028. doi: 10.1074/jbc.271.17.10023. [DOI] [PubMed] [Google Scholar]
  19. Geppert M., Goda Y., Hammer R. E., Li C., Rosahl T. W., Stevens C. F., Südhof T. C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994 Nov 18;79(4):717–727. doi: 10.1016/0092-8674(94)90556-8. [DOI] [PubMed] [Google Scholar]
  20. Gispen W. H., Leunissen J. L., Oestreicher A. B., Verkleij A. J., Zwiers H. Presynaptic localization of B-50 phosphoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res. 1985 Mar 4;328(2):381–385. doi: 10.1016/0006-8993(85)91054-6. [DOI] [PubMed] [Google Scholar]
  21. Gispen W. H., Nielander H. B., De Graan P. N., Oestreicher A. B., Schrama L. H., Schotman P. Role of the growth-associated protein B-50/GAP-43 in neuronal plasticity. Mol Neurobiol. 1991;5(2-4):61–85. doi: 10.1007/BF02935540. [DOI] [PubMed] [Google Scholar]
  22. Gorgels T. G., Van Lookeren Campagne M., Oestreicher A. B., Gribnau A. A., Gispen W. H. B-50/GAP43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract. J Neurosci. 1989 Nov;9(11):3861–3869. doi: 10.1523/JNEUROSCI.09-11-03861.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goslin K., Banker G. Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J Cell Biol. 1990 Apr;110(4):1319–1331. doi: 10.1083/jcb.110.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goslin K., Schreyer D. J., Skene J. H., Banker G. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature. 1988 Dec 15;336(6200):672–674. doi: 10.1038/336672a0. [DOI] [PubMed] [Google Scholar]
  25. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780–785. doi: 10.1126/science.8430330. [DOI] [PubMed] [Google Scholar]
  26. Hayashi T., McMahon H., Yamasaki S., Binz T., Hata Y., Südhof T. C., Niemann H. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 1994 Nov 1;13(21):5051–5061. doi: 10.1002/j.1460-2075.1994.tb06834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Heidelberger R., Heinemann C., Neher E., Matthews G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature. 1994 Oct 6;371(6497):513–515. doi: 10.1038/371513a0. [DOI] [PubMed] [Google Scholar]
  29. Hens J. J., De Wit M., Boomsma F., Mercken M., Oestreicher A. B., Gispen W. H., De Graan P. N. N-terminal-specific anti-B-50 (GAP-43) antibodies inhibit Ca(2+)-induced noradrenaline release, B-50 phosphorylation and dephosphorylation, and calmodulin binding. J Neurochem. 1995 Mar;64(3):1127–1136. doi: 10.1046/j.1471-4159.1995.64031127.x. [DOI] [PubMed] [Google Scholar]
  30. Hens J. J., De Wit M., Dekker L. V., Boomsma F., Oestreicher A. B., Margolis F., Gispen W. H., De Graan P. N. Studies on the role of B-50 (GAP-43) in the mechanism of Ca(2+)-induced noradrenaline release: lack of involvement of protein kinase C after the Ca2+ trigger. J Neurochem. 1993 Apr;60(4):1264–1273. doi: 10.1111/j.1471-4159.1993.tb03286.x. [DOI] [PubMed] [Google Scholar]
  31. Hessler N. A., Shirke A. M., Malinow R. The probability of transmitter release at a mammalian central synapse. Nature. 1993 Dec 9;366(6455):569–572. doi: 10.1038/366569a0. [DOI] [PubMed] [Google Scholar]
  32. Igarashi M., Strittmatter S. M., Vartanian T., Fishman M. C. Mediation by G proteins of signals that cause collapse of growth cones. Science. 1993 Jan 1;259(5091):77–79. doi: 10.1126/science.8418498. [DOI] [PubMed] [Google Scholar]
  33. Ivins K. J., Neve K. A., Feller D. J., Fidel S. A., Neve R. L. Antisense GAP-43 inhibits the evoked release of dopamine from PC12 cells. J Neurochem. 1993 Feb;60(2):626–633. doi: 10.1111/j.1471-4159.1993.tb03194.x. [DOI] [PubMed] [Google Scholar]
  34. Li C., Ullrich B., Zhang J. Z., Anderson R. G., Brose N., Südhof T. C. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature. 1995 Jun 15;375(6532):594–599. doi: 10.1038/375594a0. [DOI] [PubMed] [Google Scholar]
  35. Liu Y. C., Storm D. R. Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration. Trends Pharmacol Sci. 1990 Mar;11(3):107–111. doi: 10.1016/0165-6147(90)90195-e. [DOI] [PubMed] [Google Scholar]
  36. Liu Y., Fisher D. A., Storm D. R. Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J Neurosci. 1994 Oct;14(10):5807–5817. doi: 10.1523/JNEUROSCI.14-10-05807.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Misumi Y., Oda K., Fujiwara T., Takami N., Tashiro K., Ikehara Y. Functional expression of furin demonstrating its intracellular localization and endoprotease activity for processing of proalbumin and complement pro-C3. J Biol Chem. 1991 Sep 5;266(25):16954–16959. [PubMed] [Google Scholar]
  38. Montecucco C., Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994 Jul;13(1):1–8. doi: 10.1111/j.1365-2958.1994.tb00396.x. [DOI] [PubMed] [Google Scholar]
  39. Neher E., Zucker R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron. 1993 Jan;10(1):21–30. doi: 10.1016/0896-6273(93)90238-m. [DOI] [PubMed] [Google Scholar]
  40. Nichols R. A., Sihra T. S., Czernik A. J., Nairn A. C., Greengard P. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature. 1990 Feb 15;343(6259):647–651. doi: 10.1038/343647a0. [DOI] [PubMed] [Google Scholar]
  41. Niemann H., Blasi J., Jahn R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 1994 May;4(5):179–185. doi: 10.1016/0962-8924(94)90203-8. [DOI] [PubMed] [Google Scholar]
  42. O'Connor V., Augustine G. J., Betz H. Synaptic vesicle exocytosis: molecules and models. Cell. 1994 Mar 11;76(5):785–787. doi: 10.1016/0092-8674(94)90352-2. [DOI] [PubMed] [Google Scholar]
  43. Oho C., Seino S., Takahashi M. Expression and complex formation of soluble N-ethyl-maleimide-sensitive factor attachment protein (SNAP) receptors in clonal rat endocrine cells. Neurosci Lett. 1995 Feb 17;186(2-3):208–210. doi: 10.1016/0304-3940(95)11317-p. [DOI] [PubMed] [Google Scholar]
  44. Rothman J. E., Warren G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol. 1994 Mar 1;4(3):220–233. doi: 10.1016/s0960-9822(00)00051-8. [DOI] [PubMed] [Google Scholar]
  45. Scheller R. H. Membrane trafficking in the presynaptic nerve terminal. Neuron. 1995 May;14(5):893–897. doi: 10.1016/0896-6273(95)90328-3. [DOI] [PubMed] [Google Scholar]
  46. Sheng Z. H., Rettig J., Cook T., Catterall W. A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature. 1996 Feb 1;379(6564):451–454. doi: 10.1038/379451a0. [DOI] [PubMed] [Google Scholar]
  47. Skene J. H. Axonal growth-associated proteins. Annu Rev Neurosci. 1989;12:127–156. doi: 10.1146/annurev.ne.12.030189.001015. [DOI] [PubMed] [Google Scholar]
  48. Skene J. H. GAP-43 as a 'calmodulin sponge' and some implications for calcium signalling in axon terminals. Neurosci Res Suppl. 1990;13:S112–S125. doi: 10.1016/0921-8696(90)90040-a. [DOI] [PubMed] [Google Scholar]
  49. Skene J. H., Jacobson R. D., Snipes G. J., McGuire C. B., Norden J. J., Freeman J. A. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science. 1986 Aug 15;233(4765):783–786. doi: 10.1126/science.3738509. [DOI] [PubMed] [Google Scholar]
  50. Skene J. H., Virág I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol. 1989 Feb;108(2):613–624. doi: 10.1083/jcb.108.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Strittmatter S. M., Fankhauser C., Huang P. L., Mashimo H., Fishman M. C. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell. 1995 Feb 10;80(3):445–452. doi: 10.1016/0092-8674(95)90495-6. [DOI] [PubMed] [Google Scholar]
  52. Strittmatter S. M., Valenzuela D., Kennedy T. E., Neer E. J., Fishman M. C. G0 is a major growth cone protein subject to regulation by GAP-43. Nature. 1990 Apr 26;344(6269):836–841. doi: 10.1038/344836a0. [DOI] [PubMed] [Google Scholar]
  53. Strittmatter S. M., Vartanian T., Fishman M. C. GAP-43 as a plasticity protein in neuronal form and repair. J Neurobiol. 1992 Jul;23(5):507–520. doi: 10.1002/neu.480230506. [DOI] [PubMed] [Google Scholar]
  54. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  55. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  56. Takami N., Oda K., Ikehara Y. Aberrant processing of alkaline phosphatase precursor caused by blocking the synthesis of glycosylphosphatidylinositol. J Biol Chem. 1992 Jan 15;267(2):1042–1047. [PubMed] [Google Scholar]
  57. Thomas P., Wong J. G., Almers W. Millisecond studies of secretion in single rat pituitary cells stimulated by flash photolysis of caged Ca2+. EMBO J. 1993 Jan;12(1):303–306. doi: 10.1002/j.1460-2075.1993.tb05657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Van Hooff C. O., Holthuis J. C., Oestreicher A. B., Boonstra J., De Graan P. N., Gispen W. H. Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells. J Cell Biol. 1989 Mar;108(3):1115–1125. doi: 10.1083/jcb.108.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vitale N., Deloulme J. C., Thiersé D., Aunis D., Bader M. F. GAP-43 controls the availability of secretory chromaffin granules for regulated exocytosis by stimulating a granule-associated G0. J Biol Chem. 1994 Dec 2;269(48):30293–30298. [PubMed] [Google Scholar]
  60. Zuber M. X., Strittmatter S. M., Fishman M. C. A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Nature. 1989 Sep 28;341(6240):345–348. doi: 10.1038/341345a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES