Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):559–564. doi: 10.1042/bj3250559

Two Rab proteins, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs), are present on immunoisolated parietal cell tubulovesicles.

B C Calhoun 1, J R Goldenring 1
PMCID: PMC1218595  PMID: 9230141

Abstract

The tubulovesicles of gastric parietal cells sequester H+/K+-ATPase molecules within resting parietal cells. Stimulation of parietal cell secretion elicits delivery of intracellular H+/K+-ATPase to the apically oriented secretory canaliculus. Previous investigations have suggested that this process requires the regulated fusion of intracellular tubulovesicles with the canalicular target membrane. We have sought to investigate the presence of critical putative regulators of vesicle fusion on immunoisolated gastric parietal cell tubulovesicles. Highly purified tubulovesicles were prepared by gradient fractionation and immunoisolation on magnetic beads coated with monoclonal antibodies against the alpha subunit of H+/K+-ATPase. Western blot analysis revealed the presence of Rab11, Rab25, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs) on immunoisolated vesicles. The same cohort of proteins was recovered on vesicles immunoisolated with monoclonal antibodies against SCAMPs and VAMP-2. In contrast, whereas immunoreactivities for syntaxin 1A/1B and synaptosome-associated protein (SNAP-25) were present in gradient-isolated vesicles, none of the immunoreactivity was associated with immunoisolated vesicles. The observation of VAMP-2 and two Rab proteins on immunoisolated H+/K+-ATPase-containing tubulovesicles supports the role for tubulovesicles in a regulated vesicle fusion process. In addition, the presence of SCAMPs along with Rab11 and Rab25 implicates the tubulovesicles as a critical apical recycling vesicle population.

Full Text

The Full Text of this article is available as a PDF (259.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basson M. D., Goldenring J. R., Tang L. H., Lewis J. J., Padfield P., Jamieson J. D., Modlin I. M. Redistribution of 23 kDa tubulovesicle-associated GTP-binding proteins during parietal cell stimulation. Biochem J. 1991 Oct 1;279(Pt 1):43–48. doi: 10.1042/bj2790043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumert M., Maycox P. R., Navone F., De Camilli P., Jahn R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 1989 Feb;8(2):379–384. doi: 10.1002/j.1460-2075.1989.tb03388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. K., García-Arrarás J. E., Elferink L. A., Peterson K., Fleming A. M., Hazuka C. D., Scheller R. H. The syntaxin family of vesicular transport receptors. Cell. 1993 Sep 10;74(5):863–873. doi: 10.1016/0092-8674(93)90466-4. [DOI] [PubMed] [Google Scholar]
  4. Bennett M. K., Scheller R. H. The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2559–2563. doi: 10.1073/pnas.90.7.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourne H. R. Do GTPases direct membrane traffic in secretion? Cell. 1988 Jun 3;53(5):669–671. doi: 10.1016/0092-8674(88)90081-5. [DOI] [PubMed] [Google Scholar]
  6. Bradbury N. A., Cohn J. A., Venglarik C. J., Bridges R. J. Biochemical and biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin-coated vesicles. J Biol Chem. 1994 Mar 18;269(11):8296–8302. [PubMed] [Google Scholar]
  7. Brand S. H., Castle J. D. SCAMP 37, a new marker within the general cell surface recycling system. EMBO J. 1993 Oct;12(10):3753–3761. doi: 10.1002/j.1460-2075.1993.tb06053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brand S. H., Laurie S. M., Mixon M. B., Castle J. D. Secretory carrier membrane proteins 31-35 define a common protein composition among secretory carrier membranes. J Biol Chem. 1991 Oct 5;266(28):18949–18957. [PubMed] [Google Scholar]
  9. Brown D., Orci L. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature. 1983 Mar 17;302(5905):253–255. doi: 10.1038/302253a0. [DOI] [PubMed] [Google Scholar]
  10. Brown D., Weyer P., Orci L. Vasopressin stimulates endocytosis in kidney collecting duct principal cells. Eur J Cell Biol. 1988 Jun;46(2):336–341. [PubMed] [Google Scholar]
  11. Bucci C., Lütcke A., Steele-Mortimer O., Olkkonen V. M., Dupree P., Chiariello M., Bruni C. B., Simons K., Zerial M. Co-operative regulation of endocytosis by three Rab5 isoforms. FEBS Lett. 1995 Jun 5;366(1):65–71. doi: 10.1016/0014-5793(95)00477-q. [DOI] [PubMed] [Google Scholar]
  12. Cain C. C., Trimble W. S., Lienhard G. E. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem. 1992 Jun 15;267(17):11681–11684. [PubMed] [Google Scholar]
  13. Calhoun B. C., Goldenring J. R. Rab proteins in gastric parietal cells: evidence for the membrane recycling hypothesis. Yale J Biol Med. 1996 Jan-Feb;69(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  14. Cameron P. L., Südhof T. C., Jahn R., De Camilli P. Colocalization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis. J Cell Biol. 1991 Oct;115(1):151–164. doi: 10.1083/jcb.115.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chavrier P., Gorvel J. P., Stelzer E., Simons K., Gruenberg J., Zerial M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature. 1991 Oct 24;353(6346):769–772. doi: 10.1038/353769a0. [DOI] [PubMed] [Google Scholar]
  16. Crothers J. M., Jr, Chow D. C., Forte J. G. Omeprazole decreases H(+)-K(+)-ATPase protein and increases permeability of oxyntic secretory membranes in rabbits. Am J Physiol. 1993 Aug;265(2 Pt 1):G231–G241. doi: 10.1152/ajpgi.1993.265.2.G231. [DOI] [PubMed] [Google Scholar]
  17. Ferro-Novick S., Jahn R. Vesicle fusion from yeast to man. Nature. 1994 Jul 21;370(6486):191–193. doi: 10.1038/370191a0. [DOI] [PubMed] [Google Scholar]
  18. Fischer von Mollard G., Mignery G. A., Baumert M., Perin M. S., Hanson T. J., Burger P. M., Jahn R., Südhof T. C. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1988–1992. doi: 10.1073/pnas.87.5.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fischer von Mollard G., Stahl B., Khokhlatchev A., Südhof T. C., Jahn R. Rab3C is a synaptic vesicle protein that dissociates from synaptic vesicles after stimulation of exocytosis. J Biol Chem. 1994 Apr 15;269(15):10971–10974. [PubMed] [Google Scholar]
  20. Forte J. G., Black J. A., Forte T. M., Machen T. E., Wolosin J. M. Ultrastructural changes related to functional activity in gastric oxyntic cells. Am J Physiol. 1981 Nov;241(5):G349–G358. doi: 10.1152/ajpgi.1981.241.5.G349. [DOI] [PubMed] [Google Scholar]
  21. Forte T. M., Machen T. E., Forte J. G. Ultrastructural changes in oxyntic cells associated with secretory function: a membrane-recycling hypothesis. Gastroenterology. 1977 Oct;73(4 Pt 2):941–955. [PubMed] [Google Scholar]
  22. Gaisano H. Y., Sheu L., Foskett J. K., Trimble W. S. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem. 1994 Jun 24;269(25):17062–17066. [PubMed] [Google Scholar]
  23. Goldenring J. R., Shen K. R., Vaughan H. D., Modlin I. M. Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J Biol Chem. 1993 Sep 5;268(25):18419–18422. [PubMed] [Google Scholar]
  24. Goldenring J. R., Smith J., Vaughan H. D., Cameron P., Hawkins W., Navarre J. Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am J Physiol. 1996 Mar;270(3 Pt 1):G515–G525. doi: 10.1152/ajpgi.1996.270.3.G515. [DOI] [PubMed] [Google Scholar]
  25. Goldenring J. R., Soroka C. J., Shen K. R., Tang L. H., Rodriguez W., Vaughan H. D., Stoch S. A., Modlin I. M. Enrichment of rab11, a small GTP-binding protein, in gastric parietal cells. Am J Physiol. 1994 Aug;267(2 Pt 1):G187–G194. doi: 10.1152/ajpgi.1994.267.2.G187. [DOI] [PubMed] [Google Scholar]
  26. Jin M., Saucan L., Farquhar M. G., Palade G. E. Rab1a and multiple other Rab proteins are associated with the transcytotic pathway in rat liver. J Biol Chem. 1996 Nov 22;271(47):30105–30113. doi: 10.1074/jbc.271.47.30105. [DOI] [PubMed] [Google Scholar]
  27. Laurie S. M., Cain C. C., Lienhard G. E., Castle J. D. The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem. 1993 Sep 5;268(25):19110–19117. [PubMed] [Google Scholar]
  28. McMahon H. T., Südhof T. C. Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site. J Biol Chem. 1995 Feb 3;270(5):2213–2217. doi: 10.1074/jbc.270.5.2213. [DOI] [PubMed] [Google Scholar]
  29. Oyler G. A., Higgins G. A., Hart R. A., Battenberg E., Billingsley M., Bloom F. E., Wilson M. C. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol. 1989 Dec;109(6 Pt 1):3039–3052. doi: 10.1083/jcb.109.6.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Padfield P. J., Jamieson J. D. Low molecular weight GTP-binding proteins associated with zymogen granule membranes from rat pancreas. Biochem Biophys Res Commun. 1991 Jan 31;174(2):600–605. doi: 10.1016/0006-291x(91)91459-p. [DOI] [PubMed] [Google Scholar]
  31. Pfeffer S. R. Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol. 1994 Aug;6(4):522–526. doi: 10.1016/0955-0674(94)90071-x. [DOI] [PubMed] [Google Scholar]
  32. Roth D., Burgoyne R. D. SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Lett. 1994 Sep 5;351(2):207–210. doi: 10.1016/0014-5793(94)00833-7. [DOI] [PubMed] [Google Scholar]
  33. Sadoul K., Lang J., Montecucco C., Weller U., Regazzi R., Catsicas S., Wollheim C. B., Halban P. A. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J Cell Biol. 1995 Mar;128(6):1019–1028. doi: 10.1083/jcb.128.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Soldati T., Rancaño C., Geissler H., Pfeffer S. R. Rab7 and Rab9 are recruited onto late endosomes by biochemically distinguishable processes. J Biol Chem. 1995 Oct 27;270(43):25541–25548. doi: 10.1074/jbc.270.43.25541. [DOI] [PubMed] [Google Scholar]
  35. Strange K., Willingham M. C., Handler J. S., Harris H. W., Jr Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol. 1988 Jul;103(1):17–28. doi: 10.1007/BF01871929. [DOI] [PubMed] [Google Scholar]
  36. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  37. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  38. Søgaard M., Tani K., Ye R. R., Geromanos S., Tempst P., Kirchhausen T., Rothman J. E., Söllner T. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell. 1994 Sep 23;78(6):937–948. doi: 10.1016/0092-8674(94)90270-4. [DOI] [PubMed] [Google Scholar]
  39. Takei K., Mundigl O., Daniell L., De Camilli P. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol. 1996 Jun;133(6):1237–1250. doi: 10.1083/jcb.133.6.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tang L. H., Stoch S. A., Modlin I. M., Goldenring J. R. Identification of rab2 as a tubulovesicle-membrane-associated protein in rabbit gastric parietal cells. Biochem J. 1992 Aug 1;285(Pt 3):715–719. doi: 10.1042/bj2850715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tisdale E. J., Balch W. E. Rab2 is essential for the maturation of pre-Golgi intermediates. J Biol Chem. 1996 Nov 15;271(46):29372–29379. doi: 10.1074/jbc.271.46.29372. [DOI] [PubMed] [Google Scholar]
  42. Ullrich O., Reinsch S., Urbé S., Zerial M., Parton R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol. 1996 Nov;135(4):913–924. doi: 10.1083/jcb.135.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Urbé S., Huber L. A., Zerial M., Tooze S. A., Parton R. G. Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett. 1993 Nov 15;334(2):175–182. doi: 10.1016/0014-5793(93)81707-7. [DOI] [PubMed] [Google Scholar]
  44. Walch-Solimena C., Blasi J., Edelmann L., Chapman E. R., von Mollard G. F., Jahn R. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J Cell Biol. 1995 Feb;128(4):637–645. doi: 10.1083/jcb.128.4.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zerial M., Stenmark H. Rab GTPases in vesicular transport. Curr Opin Cell Biol. 1993 Aug;5(4):613–620. doi: 10.1016/0955-0674(93)90130-i. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES