Abstract
Protozoa of the order kinetoplastida have colonized many habitats, and several species are important parasites of humans. Adaptation to different environments requires an associated adaptation at a cell's interface with its environment, i.e. the plasma membrane. Sugar transport by the kinetoplastida as a phylogenetically related group of organisms offers an exceptional model in which to study the ways by which the carrier proteins involved in this process may evolve to meet differing environmental challenges. Seven genes encoding proteins involved in glucose transport have been cloned from several kinetoplastid species. The transporters all belong to the glucose transporter superfamily exemplified by the mammalian erythrocyte transporter GLUT1. Some species, such as the African trypanosome Trypanosoma brucei, which undergo a life cycle where the parasites are exposed to very different glucose concentrations in the mammalian bloodstream and tsetse-fly midgut, have evolved two different transporters to deal with this fluctuation. Other species, such as the South American trypanosome Trypanosoma cruzi, multiply predominantly in conditions of relative glucose deprivation (intracellularly in the mammalian host, or within the reduviid bug midgut) and have a single, relatively high-affinity type, transporter. All of the kinetoplastid transporters can also transport d-fructose, and are relatively insensitive to the classical inhibitors of GLUT1 transport cytochalasin B and phloretin.
Full Text
The Full Text of this article is available as a PDF (659.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam R. D., Yang Y. M., Nash T. E. The cysteine-rich protein gene family of Giardia lamblia: loss of the CRP170 gene in an antigenic variant. Mol Cell Biol. 1992 Mar;12(3):1194–1201. doi: 10.1128/mcb.12.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arbuckle M. I., Kane S., Porter L. M., Seatter M. J., Gould G. W. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry. 1996 Dec 24;35(51):16519–16527. doi: 10.1021/bi962210n. [DOI] [PubMed] [Google Scholar]
- Bakker B. M., Westerhoff H. V., Michels P. A. Regulation and control of compartmentalized glycolysis in bloodstream form Trypanosoma brucei. J Bioenerg Biomembr. 1995 Oct;27(5):513–525. doi: 10.1007/BF02110191. [DOI] [PubMed] [Google Scholar]
- Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. doi: 10.1016/0304-4157(93)90015-g. [DOI] [PubMed] [Google Scholar]
- Barrett M. P., Tetaud E., Seyfang A., Bringaud F., Baltz T. Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Biochem J. 1995 Dec 15;312(Pt 3):687–691. doi: 10.1042/bj3120687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett M. P. The pentose phosphate pathway and parasitic protozoa. Parasitol Today. 1997 Jan;13(1):11–16. doi: 10.1016/s0169-4758(96)10075-2. [DOI] [PubMed] [Google Scholar]
- Blum J. J. Energy metabolism in Leishmania. J Bioenerg Biomembr. 1994 Apr;26(2):147–155. doi: 10.1007/BF00763063. [DOI] [PubMed] [Google Scholar]
- Botfield M. C., Naguchi K., Tsuchiya T., Wilson T. H. Membrane topology of the melibiose carrier of Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1818–1822. [PubMed] [Google Scholar]
- Botfield M. C., Wilson T. H. Mutations that simultaneously alter both sugar and cation specificity in the melibiose carrier of Escherichia coli. J Biol Chem. 1988 Sep 15;263(26):12909–12915. [PubMed] [Google Scholar]
- Bowman B. J., Mainzer S. E., Allen K. E., Slayman C. W. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta. 1978 Sep 11;512(1):13–28. doi: 10.1016/0005-2736(78)90214-6. [DOI] [PubMed] [Google Scholar]
- Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
- Bringaud F., Baltz T. A potential hexose transporter gene expressed predominantly in the bloodstream form of Trypanosoma brucei. Mol Biochem Parasitol. 1992 May;52(1):111–121. doi: 10.1016/0166-6851(92)90040-q. [DOI] [PubMed] [Google Scholar]
- Bringaud F., Baltz T. African trypanosome glucose transporter genes: organization and evolution of a multigene family. Mol Biol Evol. 1994 Mar;11(2):220–230. doi: 10.1093/oxfordjournals.molbev.a040104. [DOI] [PubMed] [Google Scholar]
- Bringaud F., Baltz T. Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol Cell Biol. 1993 Feb;13(2):1146–1154. doi: 10.1128/mcb.13.2.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
- Burchmore R. J., Hart D. T. Glucose transport in amastigotes and promastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol. 1995 Oct;74(1):77–86. doi: 10.1016/0166-6851(95)02485-9. [DOI] [PubMed] [Google Scholar]
- Cairns B. R., Collard M. W., Landfear S. M. Developmentally regulated gene from Leishmania encodes a putative membrane transport protein. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7682–7686. doi: 10.1073/pnas.86.20.7682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carrington M., Boothroyd J. Implications of conserved structural motifs in disparate trypanosome surface proteins. Mol Biochem Parasitol. 1996 Oct 30;81(2):119–126. doi: 10.1016/0166-6851(96)02706-5. [DOI] [PubMed] [Google Scholar]
- Caspari T., Will A., Opekarová M., Sauer N., Tanner W. Hexose/H+ symporters in lower and higher plants. J Exp Biol. 1994 Nov;196:483–491. doi: 10.1242/jeb.196.1.483. [DOI] [PubMed] [Google Scholar]
- Colville C. A., Seatter M. J., Jess T. J., Gould G. W., Thomas H. M. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993 Mar 15;290(Pt 3):701–706. doi: 10.1042/bj2900701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darling T. N., Davis D. G., London R. E., Blum J. J. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7129–7133. doi: 10.1073/pnas.84.20.7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drew M. E., Langford C. K., Klamo E. M., Russell D. G., Kavanaugh M. P., Landfear S. M. Functional expression of a myo-inositol/H+ symporter from Leishmania donovani. Mol Cell Biol. 1995 Oct;15(10):5508–5515. doi: 10.1128/mcb.15.10.5508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durieux P. O., Schütz P., Brun R., Köhler P. Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. Mol Biochem Parasitol. 1991 Mar;45(1):19–27. doi: 10.1016/0166-6851(91)90023-y. [DOI] [PubMed] [Google Scholar]
- Eddy A. A. Slip and leak models of gradient-coupled solute transport. Biochem Soc Trans. 1980 Jun;8(3):271–273. doi: 10.1042/bst0080271. [DOI] [PubMed] [Google Scholar]
- Eisenthal R., Game S., Holman G. D. Specificity and kinetics of hexose transport in Trypanosoma brucei. Biochim Biophys Acta. 1989 Oct 2;985(1):81–89. doi: 10.1016/0005-2736(89)90107-7. [DOI] [PubMed] [Google Scholar]
- Fry A. J., Towner P., Holman G. D., Eisenthal R. Transport of D-fructose and its analogues by Trypanosoma brucei. Mol Biochem Parasitol. 1993 Jul;60(1):9–18. doi: 10.1016/0166-6851(93)90023-q. [DOI] [PubMed] [Google Scholar]
- Gardiner P. R. Recent studies of the biology of Trypanosoma vivax. Adv Parasitol. 1989;28:229–317. doi: 10.1016/s0065-308x(08)60334-6. [DOI] [PubMed] [Google Scholar]
- Gillin F. D., Hagblom P., Harwood J., Aley S. B., Reiner D. S., McCaffery M., So M., Guiney D. G. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4463–4467. doi: 10.1073/pnas.87.12.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith J. K., Baker M. E., Rouch D. A., Page M. G., Skurray R. A., Paulsen I. T., Chater K. F., Baldwin S. A., Henderson P. J. Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol. 1992 Aug;4(4):684–695. doi: 10.1016/0955-0674(92)90090-y. [DOI] [PubMed] [Google Scholar]
- Gruenberg J., Sharma P. R., Deshusses J. D-Glucose transport in Trypanosoma brucei. D-Glucose transport is the rate-limiting step of its metabolism. Eur J Biochem. 1978 Sep 1;89(2):461–469. doi: 10.1111/j.1432-1033.1978.tb12549.x. [DOI] [PubMed] [Google Scholar]
- Hama H., Wilson T. H. Cation-coupling in chimeric melibiose carriers derived from Escherichia coli and Klebsiella pneumoniae. The amino-terminal portion is crucial for Na+ recognition in melibiose transport. J Biol Chem. 1993 May 15;268(14):10060–10065. [PubMed] [Google Scholar]
- Hama H., Wilson T. H. Primary structure and characteristics of the melibiose carrier of Klebsiella pneumoniae. J Biol Chem. 1992 Sep 15;267(26):18371–18376. [PubMed] [Google Scholar]
- Hama H., Wilson T. H. Replacement of alanine 58 by asparagine enables the melibiose carrier of Klebsiella pneumoniae to couple sugar transport to Na+. J Biol Chem. 1994 Jan 14;269(2):1063–1067. [PubMed] [Google Scholar]
- Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
- Henderson P. J., Baldwin S. A., Cairns M. T., Charalambous B. M., Dent H. C., Gunn F., Liang W. J., Lucas V. A., Martin G. E., McDonald T. P. Sugar-cation symport systems in bacteria. Int Rev Cytol. 1992;137:149–208. [PubMed] [Google Scholar]
- Hopfer U. INtestinal sugar transport: studies with isolated plasma membranes. Ann N Y Acad Sci. 1975 Dec 30;264:414–427. doi: 10.1111/j.1749-6632.1975.tb31500.x. [DOI] [PubMed] [Google Scholar]
- Hotz H. R., Lorenz P., Fischer R., Krieger S., Clayton C. Role of 3'-untranslated regions in the regulation of hexose transporter mRNAs in Trypanosoma brucei. Mol Biochem Parasitol. 1995 Dec;75(1):1–14. doi: 10.1016/0166-6851(95)02503-0. [DOI] [PubMed] [Google Scholar]
- Hresko R. C., Kruse M., Strube M., Mueckler M. Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem. 1994 Aug 12;269(32):20482–20488. [PubMed] [Google Scholar]
- Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
- Katagiri H., Asano T., Ishihara H., Tsukuda K., Lin J. L., Inukai K., Kikuchi M., Yazaki Y., Oka Y. Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity. J Biol Chem. 1992 Nov 5;267(31):22550–22555. [PubMed] [Google Scholar]
- Kawakami T., Akizawa Y., Ishikawa T., Shimamoto T., Tsuda M., Tsuchiya T. Amino acid substitutions and alteration in cation specificity in the melibiose carrier of Escherichia coli. J Biol Chem. 1988 Oct 5;263(28):14276–14280. [PubMed] [Google Scholar]
- Knodler L. A., Schofield P. J., Edwards M. R. Glucose transport in Crithidia luciliae. Mol Biochem Parasitol. 1992 Nov;56(1):1–13. doi: 10.1016/0166-6851(92)90149-e. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Langford C. K., Ewbank S. A., Hanson S. S., Ullman B., Landfear S. M. Molecular characterization of two genes encoding members of the glucose transporter superfamily in the parasitic protozoan Leishmania donovani. Mol Biochem Parasitol. 1992 Oct;55(1-2):51–64. doi: 10.1016/0166-6851(92)90126-5. [DOI] [PubMed] [Google Scholar]
- Langford C. K., Kavanaugh M. P., Stenberg P. E., Drew M. E., Zhang W., Landfear S. M. Functional expression and subcellular localization of a high-Km hexose transporter from Leishmania donovani. Biochemistry. 1995 Sep 19;34(37):11814–11821. doi: 10.1021/bi00037a020. [DOI] [PubMed] [Google Scholar]
- Langford C. K., Little B. M., Kavanaugh M. P., Landfear S. M. Functional expression of two glucose transporter isoforms from the parasitic protozoan Leishmania enriettii. J Biol Chem. 1994 Jul 8;269(27):17939–17943. [PubMed] [Google Scholar]
- Lee M. G., Bihain B. E., Russell D. G., Deckelbaum R. J., Van der Ploeg L. H. Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Sep;10(9):4506–4517. doi: 10.1128/mcb.10.9.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lolkema J. S., Poolman B. Uncoupling in secondary transport proteins. A mechanistic explanation for mutants of lac permease with an uncoupled phenotype. J Biol Chem. 1995 May 26;270(21):12670–12676. doi: 10.1074/jbc.270.21.12670. [DOI] [PubMed] [Google Scholar]
- Luján H. D., Mowatt M. R., Wu J. J., Lu Y., Lees A., Chance M. R., Nash T. E. Purification of a variant-specific surface protein of Giardia lamblia and characterization of its metal-binding properties. J Biol Chem. 1995 Jun 9;270(23):13807–13813. doi: 10.1074/jbc.270.23.13807. [DOI] [PubMed] [Google Scholar]
- Mackenzie N. E., Hall J. E., Flynn I. W., Scott A. I. 13C nuclear magnetic resonance studies of anaerobic glycolysis in Trypanosoma brucei spp. Biosci Rep. 1983 Feb;3(2):141–151. doi: 10.1007/BF01121945. [DOI] [PubMed] [Google Scholar]
- Maiden M. C., Davis E. O., Baldwin S. A., Moore D. C., Henderson P. J. Mammalian and bacterial sugar transport proteins are homologous. Nature. 1987 Feb 12;325(6105):641–643. doi: 10.1038/325641a0. [DOI] [PubMed] [Google Scholar]
- Mann B. J., Torian B. E., Vedvick T. S., Petri W. A., Jr Sequence of a cysteine-rich galactose-specific lectin of Entamoeba histolytica. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3248–3252. doi: 10.1073/pnas.88.8.3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
- Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
- Munoz-Antonia T., Richards F. F., Ullu E. Differences in glucose transport between blood stream and procyclic forms of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol. 1991 Jul;47(1):73–81. doi: 10.1016/0166-6851(91)90149-z. [DOI] [PubMed] [Google Scholar]
- Opperdoes F. R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977 Aug 15;80(2):360–364. doi: 10.1016/0014-5793(77)80476-6. [DOI] [PubMed] [Google Scholar]
- Opperdoes F. R. Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol. 1987;41:127–151. doi: 10.1146/annurev.mi.41.100187.001015. [DOI] [PubMed] [Google Scholar]
- Parsons M., Nielsen B. Active transport of 2-deoxy-D-glucose in Trypanosoma brucei procyclic forms. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):197–203. doi: 10.1016/0166-6851(90)90162-f. [DOI] [PubMed] [Google Scholar]
- Piper R. C., Xu X., Russell D. G., Little B. M., Landfear S. M. Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain. J Cell Biol. 1995 Feb;128(4):499–508. doi: 10.1083/jcb.128.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pourcher T., Zani M. L., Leblanc G. Mutagenesis of acidic residues in putative membrane-spanning segments of the melibiose permease of Escherichia coli. I. Effect on Na(+)-dependent transport and binding properties. J Biol Chem. 1993 Feb 15;268(5):3209–3215. [PubMed] [Google Scholar]
- Prat A., Katinka M., Caron F., Meyer E. Nucleotide sequence of the Paramecium primaurelia G surface protein. A huge protein with a highly periodic structure. J Mol Biol. 1986 May 5;189(1):47–60. doi: 10.1016/0022-2836(86)90380-3. [DOI] [PubMed] [Google Scholar]
- Ruff M. D., Read C. P. Specificity of carbohydrate transport in Trypanosoma equiperdum. Parasitology. 1974 Apr;68(2):103–115. [PubMed] [Google Scholar]
- Sauer N., Baier K., Gahrtz M., Stadler R., Stolz J., Truernit E. Sugar transport across the plasma membranes of higher plants. Plant Mol Biol. 1994 Dec;26(5):1671–1679. doi: 10.1007/BF00016496. [DOI] [PubMed] [Google Scholar]
- Schaefer F. W., 3rd, Martin E., Mukkada A. J. The glucose transport system in Leishmania tropica promastigotes. J Protozool. 1974 Oct;21(4):592–596. doi: 10.1111/j.1550-7408.1974.tb03708.x. [DOI] [PubMed] [Google Scholar]
- Schaefer F. W., 3rd, Mukkada A. J. Specificity of the glucose transport system in Leishmania tropica promastigotes. J Protozool. 1976 Aug;23(3):446–449. doi: 10.1111/j.1550-7408.1976.tb03810.x. [DOI] [PubMed] [Google Scholar]
- Seyfang A., Duszenko M. Functional reconstitution of the Trypanosoma brucei plasma-membrane D-glucose transporter. Eur J Biochem. 1993 Jun 1;214(2):593–597. doi: 10.1111/j.1432-1033.1993.tb17958.x. [DOI] [PubMed] [Google Scholar]
- Seyfang A., Duszenko M. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B. Eur J Biochem. 1991 Nov 15;202(1):191–196. doi: 10.1111/j.1432-1033.1991.tb16362.x. [DOI] [PubMed] [Google Scholar]
- Silverman M. Glucose transport in the kidney. Biochim Biophys Acta. 1976 Dec 14;457(3-4):303–351. doi: 10.1016/0304-4157(76)90003-4. [DOI] [PubMed] [Google Scholar]
- Silverman M. Structure and function of hexose transporters. Annu Rev Biochem. 1991;60:757–794. doi: 10.1146/annurev.bi.60.070191.003545. [DOI] [PubMed] [Google Scholar]
- Southworth G. C., Read C. P. Specificity of sugar transport in Trypanosoma gambiense. J Protozool. 1970 Aug;17(3):396–399. doi: 10.1111/j.1550-7408.1970.tb04701.x. [DOI] [PubMed] [Google Scholar]
- Southworth G. G., Read C. P. Carbohydrate transport in Trypanosoma gambiense. J Protozool. 1969 Nov;16(4):720–723. doi: 10.1111/j.1550-7408.1969.tb02332.x. [DOI] [PubMed] [Google Scholar]
- Stack S. P., Stein D. A., Landfear S. M. Structural isoforms of a membrane transport protein from Leishmania enriettii. Mol Cell Biol. 1990 Dec;10(12):6785–6790. doi: 10.1128/mcb.10.12.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein D. A., Cairns B. R., Landfear S. M. Developmentally regulated transporter in Leishmania is encoded by a family of clustered genes. Nucleic Acids Res. 1990 Mar 25;18(6):1549–1557. doi: 10.1093/nar/18.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tannich E., Ebert F., Horstmann R. D. Primary structure of the 170-kDa surface lectin of pathogenic Entamoeba histolytica. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1849–1853. doi: 10.1073/pnas.88.5.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ter Kuile B. H., Opperdoes F. R. Glucose uptake by Trypanosoma brucei. Rate-limiting steps in glycolysis and regulation of the glycolytic flux. J Biol Chem. 1991 Jan 15;266(2):857–862. [PubMed] [Google Scholar]
- Ter Kuile B. H., Opperdoes F. R. Uptake and turnover of glucose in Leishmania donovani. Mol Biochem Parasitol. 1993 Aug;60(2):313–321. doi: 10.1016/0166-6851(93)90142-k. [DOI] [PubMed] [Google Scholar]
- Tetaud E., Bringaud F., Chabas S., Barrett M. P., Baltz T. Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8278–8282. doi: 10.1073/pnas.91.17.8278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tetaud E., Chabas S., Giroud C., Barrett M. P., Baltz T. Hexose uptake in Trypanosoma cruzi: structure-activity relationship between substrate and transporter. Biochem J. 1996 Jul 15;317(Pt 2):353–359. doi: 10.1042/bj3170353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torian B. E., Flores B. M., Stroeher V. L., Hagen F. S., Stamm W. E. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6358–6362. doi: 10.1073/pnas.87.16.6358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuchiya T., Wilson D. M., Wilson T. H. Melibiose-cation cotransport system of Escherichia coli. Ann N Y Acad Sci. 1985;456:342–349. doi: 10.1111/j.1749-6632.1985.tb14884.x. [DOI] [PubMed] [Google Scholar]
- Verma R. S., Spencer-Martins I., Van Uden N. Role of de novo protein synthesis in the interconversion of glucose transport systems in the yeast Pichia ohmeri. Biochim Biophys Acta. 1987 Jun 12;900(1):139–144. doi: 10.1016/0005-2736(87)90285-9. [DOI] [PubMed] [Google Scholar]
- WARREN L. G., KITZMAN W. B. METABOLISM OF SCHIZOTRYPANUM CRUZI CHAGAS. II. GALACTOSE UTILIZATION. J Parasitol. 1963 Oct;49:808–813. [PubMed] [Google Scholar]
- Waitumbi J. N., Tetaud E., Baltz T. Glucose uptake in Trypanosoma vivax and molecular characterization of its transporter gene. Eur J Biochem. 1996 Apr 1;237(1):234–239. doi: 10.1111/j.1432-1033.1996.0234n.x. [DOI] [PubMed] [Google Scholar]
- Wandel S., Schurmann A., Becker W., Summers S. A., Shanahan M. F., Joost H. G. Mutation of two conserved arginine residues in the glucose transporter GLUT4 supresses transport activity, but not glucose-inhibitable binding of inhibitory ligands. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):36–41. doi: 10.1007/BF00168913. [DOI] [PubMed] [Google Scholar]
- Wille U., Seyfang A., Duszenko M. Glucose uptake occurs by facilitated diffusion in procyclic forms of Trypanosoma brucei. Eur J Biochem. 1996 Feb 15;236(1):228–233. doi: 10.1111/j.1432-1033.1996.00228.x. [DOI] [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M. Glucose transport in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1984 Jul;12(3):327–336. doi: 10.1016/0166-6851(84)90089-6. [DOI] [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M. Identification of a surface membrane proton-translocating ATPase in promastigotes of the parasitic protozoan Leishmania donovani. Biochem J. 1988 Nov 15;256(1):13–21. doi: 10.1042/bj2560013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M., Matthaei S., Horuk R. Identification and biochemical characterization of the plasma membrane glucose transporter of Leishmania donovani. J Biol Chem. 1986 Nov 15;261(32):15053–15057. [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1716–1720. doi: 10.1073/pnas.82.6.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ter Kuile B. H., Opperdoes F. R. Mutual adjustment of glucose uptake and metabolism in Trypanosoma brucei grown in a chemostat. J Bacteriol. 1992 Feb;174(4):1273–1279. doi: 10.1128/jb.174.4.1273-1279.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]