Abstract
This work aimed to study the relationship between agonist-induced changes in cytosolic free calcium levels, protein kinase C (PKC) activity and intracellular pH in isolated liver cells. We observed that, like alpha1-adrenergic agonists, the Ca2+-mobilizing vasoactive peptides vasopressin and angiotensin II produced an extracellular-Na+-dependent, 5-(N-ethyl-N-isopropyl)amiloride-sensitive, intracellular alkalinization, indicative of Na+/H+ antiporter activation. Blocking the agonist-induced increase in the intracellular Ca2+ concentration using the calcium chelator bis-(o-aminophenoxy)ethane-N,N,N', N'-tetra-acetic acid (BAPTA) prevented all types of receptor-mediated intracellular alkalinization. Thus activation of the Na+/H+ exchanger by either alpha1-adrenergic agonists or vasoactive peptides relies on the mobilization of intracellular Ca2+. In contrast, only the alpha1-adrenergic-agonist-induced alkalinization was dependent on extracellular Ca2+. Even though alpha1-adrenergic as well as vasoactive peptide agonists stimulated protein kinase C (PKC) activity in isolated liver cells, only the alpha1-adrenoreceptor-mediated intracellular alkalinization was dependent on PKC. According to these observations, Ca2+-mobilizing agonists appear to activate the Na+/H+ exchanger by at least two different mechanisms: (1) the alpha1-adrenoreceptor-mediated activation that is dependent on extracellular Ca2+ and PKC; and (2) vasoactive-peptide-induced alkalinization that is independent of extracellular Ca2+ and PKC. The alpha1-adrenoreceptor-mediated, PKC-sensitive, activation of the Na+/H+ exchanger seems to be responsible for the distinct ability of these receptors to elicit the sustained stimulation of hepatic functions.
Full Text
The Full Text of this article is available as a PDF (306.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anwer M. S., Atkinson J. M. Intracellular calcium-mediated activation of hepatic Na+/H+ exchange by arginine vasopressin and phenylephrine. Hepatology. 1992 Jan;15(1):134–143. doi: 10.1002/hep.1840150123. [DOI] [PubMed] [Google Scholar]
- Anwer M. S. Mechanism of activation of the Na+/H+ exchanger by arginine vasopressin in hepatocytes. Hepatology. 1994 Nov;20(5):1309–1317. [PubMed] [Google Scholar]
- Anwer M. S. Mechanism of ionomycin-induced intracellular alkalinization of rat hepatocytes. Hepatology. 1993 Aug;18(2):433–439. [PubMed] [Google Scholar]
- Berk B. C., Brock T. A., Gimbrone M. A., Jr, Alexander R. W. Early agonist-mediated ionic events in cultured vascular smooth muscle cells. Calcium mobilization is associated with intracellular acidification. J Biol Chem. 1987 Apr 15;262(11):5065–5072. [PubMed] [Google Scholar]
- Bertrand B., Wakabayashi S., Ikeda T., Pouysségur J., Shigekawa M. The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J Biol Chem. 1994 May 6;269(18):13703–13709. [PubMed] [Google Scholar]
- Berven L. A., Hughes B. P., Barritt G. J. A slowly ADP-ribosylated pertussis-toxin-sensitive GTP-binding regulatory protein is required for vasopressin-stimulated Ca2+ inflow in hepatocytes. Biochem J. 1994 Apr 15;299(Pt 2):399–407. doi: 10.1042/bj2990399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capiod T., Berthon B., Poggioli J., Burgess G. M., Claret M. The effect of Ca2+ -mobilising hormones on the Na+ --K+ pump in isolated rat liver hepatocytes. FEBS Lett. 1982 May 3;141(1):49–52. doi: 10.1016/0014-5793(82)80013-6. [DOI] [PubMed] [Google Scholar]
- Ciprés G., Butta N., Urcelay E., Parrilla R., Martin-Requero A. Impaired protein kinase C activation is associated with decreased hepatic alpha 1-adrenoreceptor responsiveness in adrenalectomized rats. Endocrinology. 1995 Feb;136(2):468–475. doi: 10.1210/endo.136.2.7835278. [DOI] [PubMed] [Google Scholar]
- Fearon C. W., Tashjian A. H., Jr Thyrotropin-releasing hormone induces redistribution of protein kinase C in GH4C1 rat pituitary cells. J Biol Chem. 1985 Jul 15;260(14):8366–8371. [PubMed] [Google Scholar]
- Frelin C., Vigne P., Ladoux A., Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem. 1988 May 16;174(1):3–14. doi: 10.1111/j.1432-1033.1988.tb14055.x. [DOI] [PubMed] [Google Scholar]
- Glennon M. C., Bird G. S., Kwan C. Y., Putney J. W., Jr Actions of vasopressin and the Ca(2+)-ATPase inhibitor, thapsigargin, on Ca2+ signaling in hepatocytes. J Biol Chem. 1992 Apr 25;267(12):8230–8233. [PubMed] [Google Scholar]
- Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hernández-Sotomayor S. M., García-Sáinz J. A. Phorbol esters and calcium-mobilizing hormones increase membrane-associated protein kinase C activity in rat hepatocytes. Biochim Biophys Acta. 1988 Jan 18;968(1):138–141. doi: 10.1016/0167-4889(88)90053-5. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
- Ives H. E., Daniel T. O. Interrelationship between growth factor-induced pH changes and intracellular Ca2+. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1950–1954. doi: 10.1073/pnas.84.7.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass G. E., Duddy S. K., Moore G. A., Orrenius S. 2,5-Di-(tert-butyl)-1,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J Biol Chem. 1989 Sep 15;264(26):15192–15198. [PubMed] [Google Scholar]
- Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification, and properties. J Biol Chem. 1982 Nov 25;257(22):13341–13348. [PubMed] [Google Scholar]
- Little P. J., Weissberg P. L., Cragoe E. J., Jr, Bobik A. Dependence of Na+/H+ antiport activation in cultured rat aortic smooth muscle on calmodulin, calcium, and ATP. Evidence for the involvement of calmodulin-dependent kinases. J Biol Chem. 1988 Nov 15;263(32):16780–16786. [PubMed] [Google Scholar]
- Lowndes J. M., Hokin-Neaverson M., Bertics P. J. Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C. Biochim Biophys Acta. 1990 Apr 9;1052(1):143–151. doi: 10.1016/0167-4889(90)90069-p. [DOI] [PubMed] [Google Scholar]
- Lynch C. J., Bocckino S. B., Blackmore P. F., Exton J. H. Calcium-mobilizing hormones and phorbol myristate acetate mediate heterologous desensitization of the hormone-sensitive hepatic Na+/K+ pump. Biochem J. 1987 Dec 15;248(3):807–813. doi: 10.1042/bj2480807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin-Requero A., Ayuso M. S., Parrilla R. Interaction of oxamate with the gluconeogenic pathway in rat liver. Arch Biochem Biophys. 1986 Apr;246(1):114–127. doi: 10.1016/0003-9861(86)90455-8. [DOI] [PubMed] [Google Scholar]
- Mitsuhashi T., Ives H. E. Intracellular Ca2+ requirement for activation of the Na+/H+ exchanger in vascular smooth muscle cells. J Biol Chem. 1988 Jun 25;263(18):8790–8795. [PubMed] [Google Scholar]
- Moolenaar W. H. Effects of growth factors on intracellular pH regulation. Annu Rev Physiol. 1986;48:363–376. doi: 10.1146/annurev.ph.48.030186.002051. [DOI] [PubMed] [Google Scholar]
- Poch E., Botey A., Gaya J., Cases A., Rivera F., Revert L. Intracellular calcium mobilization and activation of the Na+/H+ exchanger in platelets. Biochem J. 1993 Mar 1;290(Pt 2):617–622. doi: 10.1042/bj2900617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sage S. O., Jobson T. M., Rink T. J. Agonist-evoked changes in cytosolic pH and calcium concentration in human platelets: studies in physiological bicarbonate. J Physiol. 1990 Jan;420:31–45. doi: 10.1113/jphysiol.1990.sp017900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sardet C., Counillon L., Franchi A., Pouysségur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science. 1990 Feb 9;247(4943):723–726. doi: 10.1126/science.2154036. [DOI] [PubMed] [Google Scholar]
- Siffert W., Akkerman J. W. Activation of sodium-proton exchange is a prerequisite for Ca2+ mobilization in human platelets. 1987 Jan 29-Feb 4Nature. 325(6103):456–458. doi: 10.1038/325456a0. [DOI] [PubMed] [Google Scholar]
- Smart J. L., Deth R. C. Influence of alpha 1-adrenergic receptor stimulation and phorbol esters on hepatic Na+/K+-ATPase activity. Pharmacology. 1988;37(2):94–104. doi: 10.1159/000138452. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Ohmura T., Yamakado T., Hidaka H. Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol Pharmacol. 1982 Sep;22(2):408–412. [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
- Urcelay E., Butta N., Arias-Salgado M. J., Ayuso M. S., Parrilla R. Characterization of the alpha 1-adrenoceptor-mediated responses in perfused rat liver. Biochim Biophys Acta. 1993 Dec 16;1220(1):49–56. doi: 10.1016/0167-4889(93)90096-8. [DOI] [PubMed] [Google Scholar]
- Urcelay E., Butta N., Ciprés G., Martín-Requero A., Ayuso M. S., Parrilla R. Functional coupling of Na+/H+ and Na+/Ca2+ exchangers in the alpha 1-adrenoreceptor-mediated activation of hepatic metabolism. J Biol Chem. 1994 Jan 14;269(2):860–867. [PubMed] [Google Scholar]
- Urcelay E., Butta N., Manchón C. G., Ciprés G., Requero A. M., Ayuso M. S., Parrilla R. Role of protein kinase-C in the alpha 1-adrenoceptor-mediated responses of perfused rat liver. Endocrinology. 1993 Nov;133(5):2105–2115. doi: 10.1210/endo.133.5.8404660. [DOI] [PubMed] [Google Scholar]
- Veigl M. L., Klevit R. E., Sedwick W. D. The uses and limitations of calmodulin antagonists. Pharmacol Ther. 1989;44(2):181–239. doi: 10.1016/0163-7258(89)90066-1. [DOI] [PubMed] [Google Scholar]
- Wakabayashi S., Bertrand B., Ikeda T., Pouysségur J., Shigekawa M. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H(+)-sensitive and Ca2+ regulation-defective. J Biol Chem. 1994 May 6;269(18):13710–13715. [PubMed] [Google Scholar]
- Waxham M. N., Aronowski J. Ca2+/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro. Biochemistry. 1993 Mar 23;32(11):2923–2930. doi: 10.1021/bi00062a024. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Monck J. R. Hormone effects on cellular Ca2+ fluxes. Annu Rev Physiol. 1989;51:107–124. doi: 10.1146/annurev.ph.51.030189.000543. [DOI] [PubMed] [Google Scholar]