Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 1;325(Pt 3):661–666. doi: 10.1042/bj3250661

Effect of adenine nucleotides on myo-inositol-1,4,5-trisphosphate-induced calcium release.

L Missiaen 1, J B Parys 1, H D Smedt 1, I Sienaert 1, H Sipma 1, S Vanlingen 1, K Maes 1, R Casteels 1
PMCID: PMC1218609  PMID: 9271086

Abstract

The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1, 4,5)P3 receptor. It was observed that 3'-phosphoadenosine 5'-phosphoulphate, CoA, di(adenosine-5')tetraphosphate (Ap4A) and di(adenosine-5')pentaphosphate (Ap5A) were more effective than ATP. Ap4A and Ap5A also interacted with a lower EC50 than ATP. In order to find out how these adenine nucleotides affected Ins(1,4, 5)P3-induced Ca2+ release, we have measured their effect on the response of permeabilized A7r5 cells to a progressively increasing Ins(1,4,5)P3 concentration. Stimulatory ATP and Ap5A concentrations had no effect on the threshold Ins(1,4,5)P3 concentration for initiating Ca2+ release, but they stimulated Ca2+ release in the presence of supra-threshold Ins(1,4,5)P3 concentrations by increasing the co-operativity of the release process. Inhibition of the Ins(1,4,5)P3-induced Ca2+ release at higher ATP concentrations was associated with a further increase in co-operativity and also with a shift in threshold towards higher Ins(1,4,5)P3 concentrations. ATP had no effect on the non-specific Ca2+ leak in the absence of Ins(1,4,5)P3. We conclude that the adenine-nucleotide-binding site can be activated by many different adenine nucleotides. Binding of these compounds to the transducing domain of the Ins(1,4,5)P3 receptor increases the efficiency of transmitting Ins(1,4,5)P3 binding to channel opening. The inhibition by high ATP concentrations is exerted at a different site, related to Ins(1,4,5)P3 binding.

Full Text

The Full Text of this article is available as a PDF (425.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Bezprozvanny I., Ehrlich B. E. ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron. 1993 Jun;10(6):1175–1184. doi: 10.1016/0896-6273(93)90065-y. [DOI] [PubMed] [Google Scholar]
  3. Bochner B. R., Lee P. C., Wilson S. W., Cutler C. W., Ames B. N. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell. 1984 May;37(1):225–232. doi: 10.1016/0092-8674(84)90318-0. [DOI] [PubMed] [Google Scholar]
  4. Bootman M. D., Berridge M. J., Taylor C. W. All-or-nothing Ca2+ mobilization from the intracellular stores of single histamine-stimulated HeLa cells. J Physiol. 1992 May;450:163–178. doi: 10.1113/jphysiol.1992.sp019121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Smedt H., Missiaen L., Parys J. B., Bootman M. D., Mertens L., Van Den Bosch L., Casteels R. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. [PubMed] [Google Scholar]
  6. Ferris C. D., Huganir R. L., Snyder S. H. Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2147–2151. doi: 10.1073/pnas.87.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferris C. D., Snyder S. H. Inositol 1,4,5-trisphosphate-activated calcium channels. Annu Rev Physiol. 1992;54:469–488. doi: 10.1146/annurev.ph.54.030192.002345. [DOI] [PubMed] [Google Scholar]
  8. Fulceri R., Gamberucci A., Bellomo G., Giunti R., Benedetti A. CoA and fatty acyl-CoA derivatives mobilize calcium from a liver reticular pool. Biochem J. 1993 Nov 1;295(Pt 3):663–669. doi: 10.1042/bj2950663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furuichi T., Kohda K., Miyawaki A., Mikoshiba K. Intracellular channels. Curr Opin Neurobiol. 1994 Jun;4(3):294–303. doi: 10.1016/0959-4388(94)90089-2. [DOI] [PubMed] [Google Scholar]
  10. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  11. Hofer A. M., Curci S., Machen T. E., Schulz I. ATP regulates calcium leak from agonist-sensitive internal calcium stores. FASEB J. 1996 Feb;10(2):302–308. doi: 10.1096/fasebj.10.2.8641563. [DOI] [PubMed] [Google Scholar]
  12. Iino M. Effects of adenine nucleotides on inositol 1,4,5-trisphosphate-induced calcium release in vascular smooth muscle cells. J Gen Physiol. 1991 Oct;98(4):681–698. doi: 10.1085/jgp.98.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Irvine R. F. 'Quantal' Ca2+ release and the control of Ca2+ entry by inositol phosphates--a possible mechanism. FEBS Lett. 1990 Apr 9;263(1):5–9. doi: 10.1016/0014-5793(90)80692-c. [DOI] [PubMed] [Google Scholar]
  14. Kaplin A. I., Snyder S. H., Linden D. J. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. J Neurosci. 1996 Mar 15;16(6):2002–2011. doi: 10.1523/JNEUROSCI.16-06-02002.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maeda N., Kawasaki T., Nakade S., Yokota N., Taguchi T., Kasai M., Mikoshiba K. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem. 1991 Jan 15;266(2):1109–1116. [PubMed] [Google Scholar]
  16. Marshall I. C., Taylor C. W. Biphasic effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. J Biol Chem. 1993 Jun 25;268(18):13214–13220. [PubMed] [Google Scholar]
  17. Mignery G. A., Newton C. L., Archer B. T., 3rd, Südhof T. C. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Jul 25;265(21):12679–12685. [PubMed] [Google Scholar]
  18. Mignery G. A., Südhof T. C. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Missiaen L., De Smedt H., Parys J. B., Sienaert I., Valingen S., Casteels R. Threshold for inositol 1,4,5-trisphosphate action. J Biol Chem. 1996 May 24;271(21):12287–12293. doi: 10.1074/jbc.271.21.12287. [DOI] [PubMed] [Google Scholar]
  20. Missiaen L., Taylor C. W., Berridge M. J. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature. 1991 Jul 18;352(6332):241–244. doi: 10.1038/352241a0. [DOI] [PubMed] [Google Scholar]
  21. Muallem S., Pandol S. J., Beeker T. G. Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem. 1989 Jan 5;264(1):205–212. [PubMed] [Google Scholar]
  22. Nunn D. L., Taylor C. W. Liver inositol, 1,4,5-trisphosphate-binding sites are the Ca2(+)-mobilizing receptors. Biochem J. 1990 Aug 15;270(1):227–232. doi: 10.1042/bj2700227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oldershaw K. A., Nunn D. L., Taylor C. W. Quantal Ca2+ mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J. 1991 Sep 15;278(Pt 3):705–708. doi: 10.1042/bj2780705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parys J. B., Missiaen L., Smedt H. D., Sienaert I., Casteels R. Mechanisms responsible for quantal Ca2+ release from inositol trisphosphate-sensitive calcium stores. Pflugers Arch. 1996 Jul;432(3):359–367. doi: 10.1007/s004240050145. [DOI] [PubMed] [Google Scholar]
  25. Pietri F., Hilly M., Mauger J. P. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Oct 15;265(29):17478–17485. [PubMed] [Google Scholar]
  26. Renard D. C., Seitz M. B., Thomas A. P. Oxidized glutathione causes sensitization of calcium release to inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J. 1992 Jun 1;284(Pt 2):507–512. doi: 10.1042/bj2840507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rys-Sikora K. E., Ghosh T. K., Gill D. L. Modification of GTP-activated calcium translocation by fatty acyl-CoA esters. Evidence for a GTP-induced prefusion event. J Biol Chem. 1994 Dec 16;269(50):31607–31613. [PubMed] [Google Scholar]
  28. Spät A., Eberhardt I., Kiesel L. Low concentrations of adenine nucleotides enhance the receptor binding of inositol 1,4,5-trisphosphate. Biochem J. 1992 Oct 1;287(Pt 1):335–336. doi: 10.1042/bj2870335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanaka T., Hosaka K., Numa S. Long-chain acyl-CoA synthetase from rat liver. Methods Enzymol. 1981;71(Pt 100):334–341. doi: 10.1016/0076-6879(81)71042-5. [DOI] [PubMed] [Google Scholar]
  30. Tortorici G., Zhang B. X., Xu X., Muallem S. Compartmentalization of Ca2+ signaling and Ca2+ pools in pancreatic acini. Implications for the quantal behavior of Ca2+ release. J Biol Chem. 1994 Nov 25;269(47):29621–29628. [PubMed] [Google Scholar]
  31. Willcocks A. L., Cooke A. M., Potter B. V., Nahorski S. R. Stereospecific recognition sites for [3H]inositol(1,4,5)-triphosphate in particulate preparations of rat cerebellum. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1071–1078. doi: 10.1016/0006-291x(87)90756-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES