Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 1;325(Pt 3):675–684. doi: 10.1042/bj3250675

Direct ESR detection or peroxynitrite-induced tyrosine-centred protein radicals in human blood plasma.

D Pietraforte 1, M Minetti 1
PMCID: PMC1218611  PMID: 9271088

Abstract

Peroxynitrite, the reaction product of O2.- and .NO, is a toxic compound involved in several oxidative processes that modify proteins. The mechanisms of these oxidative reactions are not completely understood. In this study, using direct ESR at 37 degrees C, we observed that peroxynitrite induced in human blood plasma a long-lived singlet signal at g = 2.004 arising from proteins. This signal was not due to a specific plasma protein, because several purified proteins were able to form a peroxynitrite-induced g = 2.004 signal, but serum albumin and IgG showed the most intense signals. Hydroxyurea, a tyrosyl radical scavenger, strongly inhibited the signal, and horseradish peroxidase/H2O2, a radical-generating system known to induce tyrosyl radicals, induced a similar signal. Furthermore peptides containing a Tyr in the central portion of the molecule were able to form a stable peroxynitrite-dependent g = 2.004 signal, whereas peptides in which Tyr was substituted with Gly, Trp or Phe and peptides with Tyr at the N-terminus or near the C-terminus did not form radicals that were stable at 37 degrees C. We suggest that Tyr residues are at least the major radical sources of the peroxynitrite-dependent g = 2.004 signal at 37 degrees C in plasma or in isolated proteins. Although significantly enhanced by CO2/bicarbonate, the signal was detectable in whole plasma at relatively high peroxynitrite concentrations (>2 mM) but, after removal of ascorbate or urate or in dialysed plasma, it was detectable at lower concentrations (100-1000 microM). Our results suggest that the major role of ascorbate and urate is to reduce or 'repair' the radical(s) centred on Tyr residues and not to scavenge peroxynitrite (or nitrosoperoxycarbonate, the oxidant formed in CO2-containing fluids). This mechanism of inhibition by plasma antioxidants may be a means of preserving the physiological functions of peroxynitrite.

Full Text

The Full Text of this article is available as a PDF (559.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi S., Assereto R., Lauterburg B. H. High-dose intravenous glutathione in man. Pharmacokinetics and effects on cyst(e)ine in plasma and urine. Eur J Clin Invest. 1991 Feb;21(1):103–110. doi: 10.1111/j.1365-2362.1991.tb01366.x. [DOI] [PubMed] [Google Scholar]
  2. Alvarez B., Rubbo H., Kirk M., Barnes S., Freeman B. A., Radi R. Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol. 1996 Mar;9(2):390–396. doi: 10.1021/tx950133b. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. F., Hille R., Patel K. B. Inactivation of xanthine oxidase by oxidative radical attack. Int J Radiat Biol. 1995 Nov;68(5):535–541. doi: 10.1080/09553009514551521. [DOI] [PubMed] [Google Scholar]
  4. Barr D. P., Gunther M. R., Deterding L. J., Tomer K. B., Mason R. P. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem. 1996 Jun 28;271(26):15498–15503. doi: 10.1074/jbc.271.26.15498. [DOI] [PubMed] [Google Scholar]
  5. Bartlett D., Church D. F., Bounds P. L., Koppenol W. H. The kinetics of the oxidation of L-ascorbic acid by peroxynitrite. Free Radic Biol Med. 1995 Jan;18(1):85–92. doi: 10.1016/0891-5849(94)e0133-4. [DOI] [PubMed] [Google Scholar]
  6. Bayse G. S., Michaels A. W., Morrison M. The peroxidase-catalyzed oxidation of tyrosine. Biochim Biophys Acta. 1972 Sep 19;284(1):34–42. doi: 10.1016/0005-2744(72)90043-5. [DOI] [PubMed] [Google Scholar]
  7. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beckman J. S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Chen J., Harrison J., Martin J. C., Tsai M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):438–445. doi: 10.1016/0003-9861(92)90432-v. [DOI] [PubMed] [Google Scholar]
  9. Beckman J. S. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996 Jul-Aug;9(5):836–844. doi: 10.1021/tx9501445. [DOI] [PubMed] [Google Scholar]
  10. Buchanan C. E., Gustafson A. Mutagenesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J Bacteriol. 1992 Aug;174(16):5430–5435. doi: 10.1128/jb.174.16.5430-5435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carreras M. C., Pargament G. A., Catz S. D., Poderoso J. J., Boveris A. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 1994 Mar 14;341(1):65–68. doi: 10.1016/0014-5793(94)80241-6. [DOI] [PubMed] [Google Scholar]
  12. Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to bovine serum albumin: role of the cysteine residue. Free Radic Res Commun. 1993;18(6):353–367. doi: 10.3109/10715769309147502. [DOI] [PubMed] [Google Scholar]
  13. Davies M. J. Identification of a globin free radical in equine myoglobin treated with peroxides. Biochim Biophys Acta. 1991 Mar 8;1077(1):86–90. doi: 10.1016/0167-4838(91)90529-9. [DOI] [PubMed] [Google Scholar]
  14. Denicola A., Freeman B. A., Trujillo M., Radi R. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys. 1996 Sep 1;333(1):49–58. doi: 10.1006/abbi.1996.0363. [DOI] [PubMed] [Google Scholar]
  15. Eiserich J. P., Butler J., van der Vliet A., Cross C. E., Halliwell B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J. 1995 Sep 15;310(Pt 3):745–749. doi: 10.1042/bj3100745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GROSS A. J., SIZER I. W. The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem. 1959 Jun;234(6):1611–1614. [PubMed] [Google Scholar]
  17. Gow A., Duran D., Thom S. R., Ischiropoulos H. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys. 1996 Sep 1;333(1):42–48. doi: 10.1006/abbi.1996.0362. [DOI] [PubMed] [Google Scholar]
  18. Gräslund A., Sahlin M., Sjöberg B. M. The tyrosyl free radical in ribonucleotide reductase. Environ Health Perspect. 1985 Dec;64:139–149. doi: 10.1289/ehp.64-1568609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gunther M. R., Kelman D. J., Corbett J. T., Mason R. P. Self-peroxidation of metmyoglobin results in formation of an oxygen-reactive tryptophan-centered radical. J Biol Chem. 1995 Jul 7;270(27):16075–16081. doi: 10.1074/jbc.270.27.16075. [DOI] [PubMed] [Google Scholar]
  20. Hogg N., Joseph J., Kalyanaraman B. The oxidation of alpha-tocopherol and trolox by peroxynitrite. Arch Biochem Biophys. 1994 Oct;314(1):153–158. doi: 10.1006/abbi.1994.1423. [DOI] [PubMed] [Google Scholar]
  21. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  22. Ischiropoulos H., al-Mehdi A. B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 1995 May 15;364(3):279–282. doi: 10.1016/0014-5793(95)00307-u. [DOI] [PubMed] [Google Scholar]
  23. Kalyanaraman B., Mason R. P., Tainer B., Eling T. E. The free radical formed during the hydroperoxide-mediated deactivation of ram seminal vesicles is hemoprotein-derived. J Biol Chem. 1982 May 10;257(9):4764–4768. [PubMed] [Google Scholar]
  24. Lassmann G., Liermann B., Langen P. Stability and reactivation of tyrosine radicals from ribonucleotide reductase in tumor cells studied by ESR. Free Radic Biol Med. 1989;6(1):9–14. doi: 10.1016/0891-5849(89)90153-6. [DOI] [PubMed] [Google Scholar]
  25. Lassmann G., Liermann B., Lehmann W., Graetz H., Koberling A., Langen P. Ribonucleotide reductase in ascites tumour cells detected by electron paramagnetic resonance spectroscopy. Biochem Biophys Res Commun. 1985 Nov 15;132(3):1137–1143. doi: 10.1016/0006-291x(85)91925-4. [DOI] [PubMed] [Google Scholar]
  26. Lassmann G., Odenwaller R., Curtis J. F., DeGray J. A., Mason R. P., Marnett L. J., Eling T. E. Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase. Relation to enzyme catalysis. J Biol Chem. 1991 Oct 25;266(30):20045–20055. [PubMed] [Google Scholar]
  27. Lepoivre M., Flaman J. M., Bobé P., Lemaire G., Henry Y. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem. 1994 Aug 26;269(34):21891–21897. [PubMed] [Google Scholar]
  28. Lymar S. V., Hurst J. K. Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chem Res Toxicol. 1996 Jul-Aug;9(5):845–850. doi: 10.1021/tx960046z. [DOI] [PubMed] [Google Scholar]
  29. Lymar S. V., Jiang Q., Hurst J. K. Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry. 1996 Jun 18;35(24):7855–7861. doi: 10.1021/bi960331h. [DOI] [PubMed] [Google Scholar]
  30. Mehlhorn R. J., Fuchs J., Sumida S., Packer L. Preparation of tocopheroxyl radicals for detection by electron spin resonance. Methods Enzymol. 1990;186:197–205. doi: 10.1016/0076-6879(90)86109-9. [DOI] [PubMed] [Google Scholar]
  31. Miki H., Harada K., Yamazaki I., Tamura M., Watanabe H. Electron spin resonance spectrum of Tyr-151 free radical formed in reactions of sperm whale metmyoglobin with ethyl hydroperoxide and potassium irridate. Arch Biochem Biophys. 1989 Dec;275(2):354–362. doi: 10.1016/0003-9861(89)90382-2. [DOI] [PubMed] [Google Scholar]
  32. Minetti M., Forte T., Soriani M., Quaresima V., Menditto A., Ferrari M. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma. Biochem J. 1992 Mar 1;282(Pt 2):459–465. doi: 10.1042/bj2820459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moro M. A., Darley-Usmar V. M., Lizasoain I., Su Y., Knowles R. G., Radomski M. W., Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol. 1995 Oct;116(3):1999–2004. doi: 10.1111/j.1476-5381.1995.tb16404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murakami J., Okazaki M., Shiga T. Near UV-induced free radicals in ocular lens, studied by ESR and spin trapping. Photochem Photobiol. 1989 Apr;49(4):465–473. doi: 10.1111/j.1751-1097.1989.tb09196.x. [DOI] [PubMed] [Google Scholar]
  35. Pietraforte D., Minetti M. One-electron oxidation pathway of peroxynitrite decomposition in human blood plasma: evidence for the formation of protein tryptophan-centred radicals. Biochem J. 1997 Feb 1;321(Pt 3):743–750. doi: 10.1042/bj3210743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pryor W. A., Jin X., Squadrito G. L. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11173–11177. doi: 10.1073/pnas.91.23.11173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  38. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  39. Radi R., Cosgrove T. P., Beckman J. S., Freeman B. A. Peroxynitrite-induced luminol chemiluminescence. Biochem J. 1993 Feb 15;290(Pt 1):51–57. doi: 10.1042/bj2900051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sahlin M., Lassmann G., Pötsch S., Slaby A., Sjöberg B. M., Gräslund A. Tryptophan radicals formed by iron/oxygen reaction with Escherichia coli ribonucleotide reductase protein R2 mutant Y122F. J Biol Chem. 1994 Apr 22;269(16):11699–11702. [PubMed] [Google Scholar]
  41. Schlesinger D. H., Goldstein G., Scheid M. P., Boyse E. A. Chemical synthesis of a peptide fragment of thymopoietin II that induces selective T cell differentiation. Cell. 1975 Aug;5(4):367–370. doi: 10.1016/0092-8674(75)90055-0. [DOI] [PubMed] [Google Scholar]
  42. Stubbe J. A. Protein radical involvement in biological catalysis? Annu Rev Biochem. 1989;58:257–285. doi: 10.1146/annurev.bi.58.070189.001353. [DOI] [PubMed] [Google Scholar]
  43. Uppu R. M., Squadrito G. L., Pryor W. A. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys. 1996 Mar 15;327(2):335–343. doi: 10.1006/abbi.1996.0131. [DOI] [PubMed] [Google Scholar]
  44. Van der Vliet A., Smith D., O'Neill C. A., Kaur H., Darley-Usmar V., Cross C. E., Halliwell B. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J. 1994 Oct 1;303(Pt 1):295–301. doi: 10.1042/bj3030295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vásquez-Vivar J., Santos A. M., Junqueira V. B., Augusto O. Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicals. Biochem J. 1996 Mar 15;314(Pt 3):869–876. doi: 10.1042/bj3140869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhu L., Gunn C., Beckman J. S. Bactericidal activity of peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):452–457. doi: 10.1016/0003-9861(92)90434-x. [DOI] [PubMed] [Google Scholar]
  47. van der Vliet A., Eiserich J. P., O'Neill C. A., Halliwell B., Cross C. E. Tyrosine modification by reactive nitrogen species: a closer look. Arch Biochem Biophys. 1995 Jun 1;319(2):341–349. doi: 10.1006/abbi.1995.1303. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES