Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 1;325(Pt 3):721–726. doi: 10.1042/bj3250721

Calcium-binding properties of human erythrocyte calpain.

M Michetti 1, F Salamino 1, R Minafra 1, E Melloni 1, S Pontremoli 1
PMCID: PMC1218616  PMID: 9271093

Abstract

The results presented provide more information on the sequential mechanism that promotes the Ca2+-induced activation of human erythrocyte mu-calpain under physiological conditions. The primary event in this process corresponds to the binding of Ca2+ to eight interacting sites, of which there are four in each of the two calpain subunits. Progressive binding of this metal ion is linearly correlated with the dissociation of the proteinase, which reaches completion when all eight binding sites are occupied. The affinity for Ca2+ in the native heterodimeric calpain is increased 2-fold in the isolated 80 kDa catalytic subunit, but it reaches a Kd consistent with the physiological concentration of Ca2+ only in the active autoproteolytically derived 75 kDa form. Binding of Ca2+ in physiological conditions, and thus the formation of the 75 kDa subunit, can occur only in the presence of positive modulators. These are represented by the natural activator protein, found to be a Ca2+-binding protein, and by highly digestible substrates. The former produces a very large increase in the affinity of calpain for Ca2+, and the latter a smaller but still consistent decrease in the Kd of the proteinase for the metal ion. As a result, both dissociation into the constituent subunits and the autoproteolytic conversion of the native 80 kDa subunit into the active 75 kDa form can occur within the physiological fluctuations in Ca2+ concentration. The delay in the expression of the proteolytic activity with respect to Ca2+ binding to native calpain, no longer detectable in the 75 kDa form, can be attributed to a Ca2+-induced functional conformational change, which is correlated with the accessibility of the active site of the enzyme.

Full Text

The Full Text of this article is available as a PDF (403.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown N., Crawford C. Structural modifications associated with the change in Ca2+ sensitivity on activation of m-calpain. FEBS Lett. 1993 May 3;322(1):65–68. doi: 10.1016/0014-5793(93)81112-d. [DOI] [PubMed] [Google Scholar]
  2. Cong J., Goll D. E., Peterson A. M., Kapprell H. P. The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain). J Biol Chem. 1989 Jun 15;264(17):10096–10103. [PubMed] [Google Scholar]
  3. Coolican S. A., Haiech J., Hathaway D. R. The role of subunit autolysis in activation of smooth muscle Ca2+-dependent proteases. J Biol Chem. 1986 Mar 25;261(9):4170–4176. [PubMed] [Google Scholar]
  4. Croall D. E., DeMartino G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):813–847. doi: 10.1152/physrev.1991.71.3.813. [DOI] [PubMed] [Google Scholar]
  5. DeMartino G. N., Huff C. A., Croall D. E. Autoproteolysis of the small subunit of calcium-dependent protease II activates and regulates protease activity. J Biol Chem. 1986 Sep 15;261(26):12047–12052. [PubMed] [Google Scholar]
  6. DeMartino G. N., Huff C. A., Croall D. E. Autoproteolysis of the small subunit of calcium-dependent protease II activates and regulates protease activity. J Biol Chem. 1986 Sep 15;261(26):12047–12052. [PubMed] [Google Scholar]
  7. Goll D. E., Thompson V. F., Taylor R. G., Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays. 1992 Aug;14(8):549–556. doi: 10.1002/bies.950140810. [DOI] [PubMed] [Google Scholar]
  8. Hayashi M., Inomata M., Saito Y., Ito H., Kawashima S. Activation of intracellular calcium-activated neutral proteinase in erythrocytes and its inhibition by exogenously added inhibitors. Biochim Biophys Acta. 1991 Sep 24;1094(3):249–256. doi: 10.1016/0167-4889(91)90083-a. [DOI] [PubMed] [Google Scholar]
  9. Imajoh S., Aoki K., Ohno S., Emori Y., Kawasaki H., Sugihara H., Suzuki K. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry. 1988 Oct 18;27(21):8122–8128. doi: 10.1021/bi00421a022. [DOI] [PubMed] [Google Scholar]
  10. Melloni E., Pontremoli S. The calpains. Trends Neurosci. 1989 Nov;12(11):438–444. doi: 10.1016/0166-2236(89)90093-3. [DOI] [PubMed] [Google Scholar]
  11. Melloni E., Salamino F., Sparatore B. The calpain-calpastatin system in mammalian cells: properties and possible functions. Biochimie. 1992 Mar;74(3):217–223. doi: 10.1016/0300-9084(92)90120-4. [DOI] [PubMed] [Google Scholar]
  12. Melloni E., Sparatore B., Salamino F., Michetti M., Pontremoli S. Cytosolic calcium dependent neutral proteinase of human erythrocytes: the role of calcium ions on the molecular and catalytic properties of the enzyme. Biochem Biophys Res Commun. 1982 Aug;107(3):1053–1059. doi: 10.1016/0006-291x(82)90628-3. [DOI] [PubMed] [Google Scholar]
  13. Michetti M., Salamino F., Melloni E., Pontremoli S. Reversible inactivation of calpain isoforms by nitric oxide. Biochem Biophys Res Commun. 1995 Feb 27;207(3):1009–1014. doi: 10.1006/bbrc.1995.1285. [DOI] [PubMed] [Google Scholar]
  14. Michetti M., Salamino F., Tedesco I., Averna M., Minafra R., Melloni E., Pontremoli S. Autolysis of human erythrocyte calpain produces two active enzyme forms with different cell localization. FEBS Lett. 1996 Aug 19;392(1):11–15. doi: 10.1016/0014-5793(96)00775-2. [DOI] [PubMed] [Google Scholar]
  15. Michetti M., Viotti P. L., Melloni E., Pontremoli S. Mechanism of action of the calpain activator protein in rat skeletal muscle. Eur J Biochem. 1991 Dec 18;202(3):1177–1180. doi: 10.1111/j.1432-1033.1991.tb16487.x. [DOI] [PubMed] [Google Scholar]
  16. Murachi T. Intracellular regulatory system involving calpain and calpastatin. Biochem Int. 1989 Feb;18(2):263–294. [PubMed] [Google Scholar]
  17. Pontremoli S., Melloni E., Salamino F., Patrone M., Michetti M., Horecker B. L. Activation of neutrophil calpain following its translocation to the plasma membrane induced by phorbol ester or fMet-Leu-Phe. Biochem Biophys Res Commun. 1989 Apr 28;160(2):737–743. doi: 10.1016/0006-291x(89)92495-9. [DOI] [PubMed] [Google Scholar]
  18. Pontremoli S., Melloni E., Viotti P. L., Michetti M., Di Lisa F., Siliprandi N. Isovalerylcarnitine is a specific activator of the high calcium requiring calpain forms. Biochem Biophys Res Commun. 1990 Feb 28;167(1):373–380. doi: 10.1016/0006-291x(90)91775-n. [DOI] [PubMed] [Google Scholar]
  19. Salamino F., De Tullio R., Mengotti P., Viotti P. L., Melloni E., Pontremoli S. Site-directed activation of calpain is promoted by a membrane-associated natural activator protein. Biochem J. 1993 Feb 15;290(Pt 1):191–197. doi: 10.1042/bj2900191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. A catalytic subunit of calpain possesses full proteolytic activity. FEBS Lett. 1995 Jan 16;358(1):101–103. doi: 10.1016/0014-5793(94)01401-l. [DOI] [PubMed] [Google Scholar]
  21. Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun. 1995 Mar 8;208(1):376–383. doi: 10.1006/bbrc.1995.1348. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES