Abstract
In skeletal muscle, acute insulin treatment results in the recruitment of the GLUT4 glucose transporter from intracellular vesicular structures to the plasma membrane. The precise nature of these intracellular GLUT4 stores has, however, remained poorly defined. Using an established skeletal-muscle fractionation procedure we present evidence for the existence of two distinct intracellular GLUT4 compartments. We have shown that after fractionation of crude muscle membranes on a discontinuous sucrose gradient the majority of the GLUT4 immunoreactivity was largely present in two sucrose fractions (30 and 35%, w/w, sucrose; denoted F30 and F35 respectively) containing intracellular membranes of different buoyant densities. Here we show that these fractions contained 44+/-6 and 49+/-7% of the crude membrane GLUT4 reactivity respectively, and could be further discriminated on the basis of their immunoreactivity against specific subcellular antigen markers. Membranes from the F30 fraction were highly enriched in transferrin receptor (TfR) and annexin II, two markers of the early endosome compartment, whereas they were significantly depleted of both GLUT1 and the alpha1-subunit of (Na++K+)-ATPase, two cell-surface markers. Insulin treatment resulted in a significant reduction in GLUT4 content in membranes from the F35 fraction, whereas the amount of GLUT4 in the less dense (F30) fraction remained unaffected by insulin. Immunoprecipitation of GLUT4-containing vesicles from both intracellular fractions revealed that TfR was present in GLUT4 vesicles isolated from membranes from the F30 fraction. In contrast, GLUT4 vesicles from the F35 fraction were devoid of TfR. The aminopeptidase, vp165, was present in GLUT4 vesicles from both F30 and F35; however, vesicles isolated from F30 contained over twice as much vp165 per unit of GLUT4 than those isolated from F35. The biochemical co-localization of vp165/GLUT4 was further substantiated by double-immunogold labelling of ultrathin muscle sections. Overall, our data indicate the presence of at least two internal GLUT4 pools: one possibly derived from an endosomal recycling compartment, and the other representing a specialized insulin-sensitive GLUT4 storage pool. Both pools contain vp165.
Full Text
The Full Text of this article is available as a PDF (343.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed A., Taylor P. M., Rennie M. J. Characteristics of glutamine transport in sarcolemmal vesicles from rat skeletal muscle. Am J Physiol. 1990 Aug;259(2 Pt 1):E284–E291. doi: 10.1152/ajpendo.1990.259.2.E284. [DOI] [PubMed] [Google Scholar]
- Aledo J. C., Darakhshan F., Hundal H. S. Rab4, but not the transferrin receptor, is colocalized with GLUT4 in an insulin-sensitive intracellular compartment in rat skeletal muscle. Biochem Biophys Res Commun. 1995 Oct 4;215(1):321–328. doi: 10.1006/bbrc.1995.2469. [DOI] [PubMed] [Google Scholar]
- Aledo J. C., Hundal H. S. Sedimentation and immunological analyses of GLUT4 and alpha 2-Na,K-ATPase subunit-containing vesicles from rat skeletal muscle: evidence for segregation. FEBS Lett. 1995 Dec 4;376(3):211–215. doi: 10.1016/0014-5793(95)01282-8. [DOI] [PubMed] [Google Scholar]
- Cain C. C., Trimble W. S., Lienhard G. E. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem. 1992 Jun 15;267(17):11681–11684. [PubMed] [Google Scholar]
- Coderre L., Kandror K. V., Vallega G., Pilch P. F. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem. 1995 Nov 17;270(46):27584–27588. doi: 10.1074/jbc.270.46.27584. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Gunnarsson R., Björkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douen A. G., Ramlal T., Rastogi S., Bilan P. J., Cartee G. D., Vranic M., Holloszy J. O., Klip A. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem. 1990 Aug 15;265(23):13427–13430. [PubMed] [Google Scholar]
- Emans N., Gorvel J. P., Walter C., Gerke V., Kellner R., Griffiths G., Gruenberg J. Annexin II is a major component of fusogenic endosomal vesicles. J Cell Biol. 1993 Mar;120(6):1357–1369. doi: 10.1083/jcb.120.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenfeld D. P., Sweadner K. J. Fine specificity mapping and topography of an isozyme-specific epitope of the Na,K-ATPase catalytic subunit. J Biol Chem. 1988 Aug 5;263(22):10932–10942. [PubMed] [Google Scholar]
- Friedman J. E., Dudek R. W., Whitehead D. S., Downes D. L., Frisell W. R., Caro J. F., Dohm G. L. Immunolocalization of glucose transporter GLUT4 within human skeletal muscle. Diabetes. 1991 Jan;40(1):150–154. doi: 10.2337/diab.40.1.150. [DOI] [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenberg J., Maxfield F. R. Membrane transport in the endocytic pathway. Curr Opin Cell Biol. 1995 Aug;7(4):552–563. doi: 10.1016/0955-0674(95)80013-1. [DOI] [PubMed] [Google Scholar]
- Henriksen E. J., Rodnick K. J., Mondon C. E., James D. E., Holloszy J. O. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle. J Appl Physiol (1985) 1991 May;70(5):2322–2327. doi: 10.1152/jappl.1991.70.5.2322. [DOI] [PubMed] [Google Scholar]
- Holman G. D., Lo Leggio L., Cushman S. W. Insulin-stimulated GLUT4 glucose transporter recycling. A problem in membrane protein subcellular trafficking through multiple pools. J Biol Chem. 1994 Jul 1;269(26):17516–17524. [PubMed] [Google Scholar]
- Hundal H. S., Marette A., Mitsumoto Y., Ramlal T., Blostein R., Klip A. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem. 1992 Mar 15;267(8):5040–5043. [PubMed] [Google Scholar]
- James D. E., Piper R. C., Slot J. W. Insulin stimulation of GLUT-4 translocation: a model for regulated recycling. Trends Cell Biol. 1994 Apr;4(4):120–126. doi: 10.1016/0962-8924(94)90066-3. [DOI] [PubMed] [Google Scholar]
- Kandror K. V., Coderre L., Pushkin A. V., Pilch P. F. Comparison of glucose-transporter-containing vesicles from rat fat and muscle tissues: evidence for a unique endosomal compartment. Biochem J. 1995 Apr 15;307(Pt 2):383–390. doi: 10.1042/bj3070383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kandror K., Pilch P. F. Identification and isolation of glycoproteins that translocate to the cell surface from GLUT4-enriched vesicles in an insulin-dependent fashion. J Biol Chem. 1994 Jan 7;269(1):138–142. [PubMed] [Google Scholar]
- Keller S. R., Scott H. M., Mastick C. C., Aebersold R., Lienhard G. E. Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem. 1995 Oct 6;270(40):23612–23618. doi: 10.1074/jbc.270.40.23612. [DOI] [PubMed] [Google Scholar]
- Klip A., Ramlal T., Young D. A., Holloszy J. O. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett. 1987 Nov 16;224(1):224–230. doi: 10.1016/0014-5793(87)80452-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marette A., Krischer J., Lavoie L., Ackerley C., Carpentier J. L., Klip A. Insulin increases the Na(+)-K(+)-ATPase alpha 2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol. 1993 Dec;265(6 Pt 1):C1716–C1722. doi: 10.1152/ajpcell.1993.265.6.C1716. [DOI] [PubMed] [Google Scholar]
- Marette A., Richardson J. M., Ramlal T., Balon T. W., Vranic M., Pessin J. E., Klip A. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am J Physiol. 1992 Aug;263(2 Pt 1):C443–C452. doi: 10.1152/ajpcell.1992.263.2.C443. [DOI] [PubMed] [Google Scholar]
- Mastick C. C., Aebersold R., Lienhard G. E. Characterization of a major protein in GLUT4 vesicles. Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane. J Biol Chem. 1994 Feb 25;269(8):6089–6092. [PubMed] [Google Scholar]
- Muñoz P., Mora S., Sevilla L., Kaliman P., Tomàs E., Gumà A., Testar X., Palacín M., Zorzano A. Expression and insulin-regulated distribution of caveolin in skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes. J Biol Chem. 1996 Apr 5;271(14):8133–8139. doi: 10.1074/jbc.271.14.8133. [DOI] [PubMed] [Google Scholar]
- Muñoz P., Rosemblatt M., Testar X., Palacín M., Thoidis G., Pilch P. F., Zorzano A. The T-tubule is a cell-surface target for insulin-regulated recycling of membrane proteins in skeletal muscle. Biochem J. 1995 Dec 1;312(Pt 2):393–400. doi: 10.1042/bj3120393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramlal T., Rastogi S., Vranic M., Klip A. Decrease in glucose transporter number in skeletal muscle of mildly diabetic (streptozotocin-treated) rats. Endocrinology. 1989 Aug;125(2):890–897. doi: 10.1210/endo-125-2-890. [DOI] [PubMed] [Google Scholar]
- Rodnick K. J., Slot J. W., Studelska D. R., Hanpeter D. E., Robinson L. J., Geuze H. J., James D. E. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem. 1992 Mar 25;267(9):6278–6285. [PubMed] [Google Scholar]
- Ross S. A., Scott H. M., Morris N. J., Leung W. Y., Mao F., Lienhard G. E., Keller S. R. Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. J Biol Chem. 1996 Feb 9;271(6):3328–3332. doi: 10.1074/jbc.271.6.3328. [DOI] [PubMed] [Google Scholar]
- Satoh S., Nishimura H., Clark A. E., Kozka I. J., Vannucci S. J., Simpson I. A., Quon M. J., Cushman S. W., Holman G. D. Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem. 1993 Aug 25;268(24):17820–17829. [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J., Gigengack S., Lienhard G. E., James D. E. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol. 1991 Apr;113(1):123–135. doi: 10.1083/jcb.113.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens J. M., Pilch P. F. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev. 1995 Aug;16(4):529–546. doi: 10.1210/edrv-16-4-529. [DOI] [PubMed] [Google Scholar]
- Tanner L. I., Lienhard G. E. Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters. J Cell Biol. 1989 Apr;108(4):1537–1545. doi: 10.1083/jcb.108.4.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zokas L., Glenney J. R., Jr The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits. J Cell Biol. 1987 Nov;105(5):2111–2121. doi: 10.1083/jcb.105.5.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]