Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 1;325(Pt 3):761–769. doi: 10.1042/bj3250761

Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA.

I Garcia 1, M Rodgers 1, C Lenne 1, A Rolland 1, A Sailland 1, M Matringe 1
PMCID: PMC1218621  PMID: 9271098

Abstract

p-Hydroxyphenylpyruvate dioxygenase catalyses the transformation of p-hydroxyphenylpyruvate into homogentisate. In plants this enzyme has a crucial role because homogentisate is the aromatic precursor of all prenylquinones. Furthermore this enzyme was recently identified as the molecular target for new families of potent herbicides. In this study we examine precisely the localization of p-hydroxyphenylpyruvate dioxygenase activity within carrot cells. Our results provide evidence that, in cultured carrot cells, p-hydroxyphenylpyruvate dioxygenase is associated with the cytosol. Purification and SDS/PAGE analysis of this enzyme revealed that its activity is associated with a polypeptide of 45-46 kDa. This protein specifically cross-reacts with an antiserum raised against the p-hydroxyphenylpyruvate dioxygenase of Pseudomonas fluorescens. Gel-filtration chromatography indicates that the enzyme behaves as a homodimer. We also report the isolation and nucleotide sequence of a cDNA encoding a carrot p-hydroxyphenylpyruvate dioxygenase. The nucleotide sequence (1684 bp) encodes a protein of 442 amino acid residues with a molecular mass of 48094 Da and shows specific C-terminal regions of similarity with other p-hydroxyphenylpyruvate dioxygenases. This cDNA encodes a functional p-hydroxyphenylpyruvate dioxygenase, as evidenced by expression studies with transformed Escherichia coli cells. Comparison of the N-terminal sequence of the 45-46 kDa polypeptide purified from carrot cells with the deduced peptide sequence of the cDNA confirms that this polypeptide supports p-hydroxyphenylpyruvate dioxygenase activity. Immunodetection studies of the native enzyme in carrot cellular extracts reveal that N-terminal proteolysis occurs during the process of purification. This proteolysis explains the difference in molecular masses between the purified protein and the deduced polypeptide.

Full Text

The Full Text of this article is available as a PDF (771.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ching T. M., Poklemba C. J., Metzger R. J. Starch synthesis in shriveled and plump triticale seeds. Plant Physiol. 1983 Nov;73(3):652–657. doi: 10.1104/pp.73.3.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Denoya C. D., Skinner D. D., Morgenstern M. R. A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol. 1994 Sep;176(17):5312–5319. doi: 10.1128/jb.176.17.5312-5319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ellis M. K., Whitfield A. C., Gowans L. A., Auton T. R., Provan W. M., Lock E. A., Smith L. L. Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dione. Toxicol Appl Pharmacol. 1995 Jul;133(1):12–19. doi: 10.1006/taap.1995.1121. [DOI] [PubMed] [Google Scholar]
  4. Endo F., Awata H., Tanoue A., Ishiguro M., Eda Y., Titani K., Matsuda I. Primary structure deduced from complementary DNA sequence and expression in cultured cells of mammalian 4-hydroxyphenylpyruvic acid dioxygenase. Evidence that the enzyme is a homodimer of identical subunits homologous to rat liver-specific alloantigen F. J Biol Chem. 1992 Dec 5;267(34):24235–24240. [PubMed] [Google Scholar]
  5. Fernández-Cañn J. M., Peñalva M. A. Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus nidulans and identification of its human and plant homologues. J Biol Chem. 1995 Sep 8;270(36):21199–21205. doi: 10.1074/jbc.270.36.21199. [DOI] [PubMed] [Google Scholar]
  6. Fuqua W. C., Coyne V. E., Stein D. C., Lin C. M., Weiner R. M. Characterization of melA: a gene encoding melanin biosynthesis from the marine bacterium Shewanella colwelliana. Gene. 1991 Dec 20;109(1):131–136. doi: 10.1016/0378-1119(91)90598-6. [DOI] [PubMed] [Google Scholar]
  7. Jefford C. W., Cadby P. A. Evaluation of models for the mechanism of action of 4-hydroxyphenylpyruvate dioxygenase. Experientia. 1981 Nov 15;37(11):1134–1137. doi: 10.1007/BF01989880. [DOI] [PubMed] [Google Scholar]
  8. Lee M. H., Zhang Z. H., MacKinnon C. H., Baldwin J. E., Crouch N. P. The C-terminal of rat 4-hydroxyphenylpyruvate dioxygenase is indispensable for enzyme activity. FEBS Lett. 1996 Sep 16;393(2-3):269–272. doi: 10.1016/0014-5793(96)00902-7. [DOI] [PubMed] [Google Scholar]
  9. Lindblad B., Lindstedt G., Lindstedt S., Rundgren M. Purification and some properties of human 4-hydroxyphenylpyruvate dioxygenase (I). J Biol Chem. 1977 Jul 25;252(14):5073–5084. [PubMed] [Google Scholar]
  10. Lindblad B., Lindstedt S., Steen G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4641–4645. doi: 10.1073/pnas.74.10.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Macherel D., Kobayashi H., Akazawa T., Kawano S., Kuroiwa T. Amyloplast nucleoids in sycamore cells and presence in amyloplast DNA of homologous sequences to chloroplast genes. Biochem Biophys Res Commun. 1985 Nov 27;133(1):140–146. doi: 10.1016/0006-291x(85)91852-2. [DOI] [PubMed] [Google Scholar]
  13. Norris S. R., Barrette T. R., DellaPenna D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell. 1995 Dec;7(12):2139–2149. doi: 10.1105/tpc.7.12.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roche P. A., Moorehead T. J., Hamilton G. A. Purification and properties of hog liver 4-hydroxyphenylpyruvate dioxygenase. Arch Biochem Biophys. 1982 Jun;216(1):62–73. doi: 10.1016/0003-9861(82)90188-6. [DOI] [PubMed] [Google Scholar]
  15. Rüetschi U., Dellsén A., Sahlin P., Stenman G., Rymo L., Lindstedt S. Human 4-hydroxyphenylpyruvate dioxygenase. Primary structure and chromosomal localization of the gene. Eur J Biochem. 1993 May 1;213(3):1081–1089. doi: 10.1111/j.1432-1033.1993.tb17857.x. [DOI] [PubMed] [Google Scholar]
  16. Schulz A., Ort O., Beyer P., Kleinig H. SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 1993 Mar 1;318(2):162–166. doi: 10.1016/0014-5793(93)80013-k. [DOI] [PubMed] [Google Scholar]
  17. Secor J. Inhibition of Barnyardgrass 4-Hydroxyphenylpyruvate Dioxygenase by Sulcotrione. Plant Physiol. 1994 Dec;106(4):1429–1433. doi: 10.1104/pp.106.4.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Soll J., Schultz G., Joyard J., Douce R., Block M. A. Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys. 1985 Apr;238(1):290–299. doi: 10.1016/0003-9861(85)90167-5. [DOI] [PubMed] [Google Scholar]
  19. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wada G. H., Fellman J. H., Fujita T. S., Roth E. S. Purification and properties of avian liver p-hydroxyphenylpyruvate hydroxylase. J Biol Chem. 1975 Sep 10;250(17):6720–6726. [PubMed] [Google Scholar]
  23. Wyckoff E. E., Pishko E. J., Kirkland T. N., Cole G. T. Cloning and expression of a gene encoding a T-cell reactive protein from Coccidioides immitis: homology to 4-hydroxyphenylpyruvate dioxygenase and the mammalian F antigen. Gene. 1995 Aug 8;161(1):107–111. doi: 10.1016/0378-1119(95)00250-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES