Abstract
Neural influences on the co-ordination of expression of the multiple subunits of skeletal muscle phosphorylase kinase and their assembly to form the holoenzyme complex, alpha4beta4gamma4delta4, have been examined during denervation and re-innervation of adult skeletal muscle and during neonatal muscle development. Denervation of the tibialis anterior and extensor digitorum longus muscles of the rat hindlimb was associated with a rapid decline in the mRNA for the gamma subunit, and an abrupt decrease in gamma-subunit protein. The levels of the alpha- and beta-subunit proteins in the denervated muscles also declined rapidly, their time course of reduction being similar to that for the gamma-subunit protein, but they did not decrease to the same extent. In contrast with the rapid decline in gamma-subunit mRNA upon denervation, alpha- and beta-subunit mRNAs stayed at control innervated levels for approx. 8-10 days, but then decreased rapidly. Their decline coincided very closely with the onset of re-innervation. Re-innervation of the denervated muscles, which occurs rapidly and uniformly after the sciatic nerve crush injury, produced an eventual slow and prolonged recovery of the mRNA for all three subunits and parallel increases in each of the subunit proteins. A similar co-ordinated increase of both subunit mRNA and subunit proteins of the phosphorylase kinase holoenzyme was observed during neonatal muscle development, during the period when the muscles were attaining their adult pattern of motor activity. The phosphorylase kinase holoenzyme remains in a non-activated form during all of these physiological changes, as is compatible with the presence of the full complement of the regulatory subunits. These data are consistent with a model whereby the transcriptional and translational expression of phosphorylase kinase gamma subunit occurs only with concomitant expression of the alpha and beta subunits. This would ensure that free and unregulated, activated gamma subunit alone, which would give rise to unregulated glycogenolysis, is not produced. The data also suggest that control of phosphorylase kinase subunit expression and the formation of the holoenzyme in skeletal muscle is provided by the motor nerve, probably through imposed levels or patterns of muscle activity.
Full Text
The Full Text of this article is available as a PDF (427.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelos K. L., Ramachandran C., Walsh D. A. Subunit phosphorylation and activation of phosphorylase kinase in perfused rat hearts. J Biol Chem. 1987 Mar 5;262(7):3219–3226. [PubMed] [Google Scholar]
- Balice-Gordon R. J., Lichtman J. W. In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J Neurosci. 1993 Feb;13(2):834–855. doi: 10.1523/JNEUROSCI.13-02-00834.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bender P. K., Dedman J. R., Emerson C. P., Jr The abundance of calmodulin mRNAs is regulated in phosphorylase kinase-deficient skeletal muscle. J Biol Chem. 1988 Jul 15;263(20):9733–9737. [PubMed] [Google Scholar]
- Berchtold M. W., Egli R., Rhyner J. A., Hameister H., Strehler E. E. Localization of the human bona fide calmodulin genes CALM1, CALM2, and CALM3 to chromosomes 14q24-q31, 2p21.1-p21.3, and 19q13.2-q13.3. Genomics. 1993 May;16(2):461–465. doi: 10.1006/geno.1993.1211. [DOI] [PubMed] [Google Scholar]
- Berenberg R. A., Forman D. S., Wood D. K., DeSilva A., Demaree J. Recovery of peripheral nerve function after axotomy: effect of triiodothyronine. Exp Neurol. 1977 Nov;57(2):349–363. doi: 10.1016/0014-4886(77)90071-1. [DOI] [PubMed] [Google Scholar]
- Bisby M. A. Fast axonal transport of labeled protein in sensory axons during regeneration. Exp Neurol. 1978 Sep 1;61(2):281–300. doi: 10.1016/0014-4886(78)90247-9. [DOI] [PubMed] [Google Scholar]
- Bray J. J., Hubbard J. I., Mills R. G. The trophic influence of tetrodotoxin-inactive nerves on normal and reinnervated rat skeletal muscles. J Physiol. 1979 Dec;297(0):479–491. doi: 10.1113/jphysiol.1979.sp013052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlsen R. C., Klein H. W., Matthews C. C., Gourley I. M. Recovery of free muscle grafts in rat: improvement is associated with an increase in cyclic adenosine monophosphate concentration or use of the condition/test paradigm. Exp Neurol. 1987 Dec;98(3):616–632. doi: 10.1016/0014-4886(87)90270-6. [DOI] [PubMed] [Google Scholar]
- Carlsen R. C. The possible role of cyclic AMP in the neurotrophic control of skeletal muscle. J Physiol. 1975 May;247(2):343–361. doi: 10.1113/jphysiol.1975.sp010935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caroni P., Becker M. The downregulation of growth-associated proteins in motoneurons at the onset of synapse elimination is controlled by muscle activity and IGF1. J Neurosci. 1992 Oct;12(10):3849–3861. doi: 10.1523/JNEUROSCI.12-10-03849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cawley K. C., Akita C. G., Angelos K. L., Walsh D. A. Characterization of the gene for rat phosphorylase kinase catalytic subunit. J Biol Chem. 1993 Jan 15;268(2):1194–1200. [PubMed] [Google Scholar]
- Cawley K. C., Akita C. G., Wineinger M. A., Carlsen R. C., Gorin F. A., Walsh D. A. Coordinated expression of phosphorylase kinase subunits in regenerating skeletal muscle. J Biol Chem. 1992 Aug 25;267(24):17287–17295. [PubMed] [Google Scholar]
- Cawley K. C., Ramachandran C., Gorin F. A., Walsh D. A. Nucleotide sequence of cDNA encoding the catalytic subunit of phosphorylase kinase from rat soleus muscle. Nucleic Acids Res. 1988 Mar 25;16(5):2355–2356. doi: 10.1093/nar/16.5.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan K. F., Graves D. J. Isolation and physicochemical properties of active complexes of rabbit muscle phosphorylase kinase. J Biol Chem. 1982 May 25;257(10):5939–5947. [PubMed] [Google Scholar]
- Chan K. F., Graves D. J. Rabbit skeletal muscle phosphorylase kinase. Catalytic and regulatory properties of the active alpha gamma delta and gamma delta complexes. J Biol Chem. 1982 May 25;257(10):5948–5955. [PubMed] [Google Scholar]
- Chan K. F., Graves D. J. Rabbit skeletal muscle phosphorylase kinase. Interactions between subunits and influence of calmodulin on different complexes. J Biol Chem. 1982 May 25;257(10):5956–5961. [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cohen P., Burchell A., Foulkes J. G., Cohen P. T., Vanaman T. C., Nairn C. Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett. 1978 Aug 15;92(2):287–293. doi: 10.1016/0014-5793(78)80772-8. [DOI] [PubMed] [Google Scholar]
- Cohen P., Picton C., Klee C. B. Activation of phosphorylase kinase from rabbit skeletal muscle by calmodulin and troponin. FEBS Lett. 1979 Aug 1;104(1):25–30. doi: 10.1016/0014-5793(79)81078-9. [DOI] [PubMed] [Google Scholar]
- Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
- Dasgupta M., Blumenthal D. K. Characterization of the regulatory domain of the gamma-subunit of phosphorylase kinase. The two noncontiguous calmodulin-binding subdomains are also autoinhibitory. J Biol Chem. 1995 Sep 22;270(38):22283–22289. doi: 10.1074/jbc.270.38.22283. [DOI] [PubMed] [Google Scholar]
- Dasgupta M., Honeycutt T., Blumenthal D. K. The gamma-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J Biol Chem. 1989 Oct 15;264(29):17156–17163. [PubMed] [Google Scholar]
- Debecker A., Martin-DeLeon P. A. Assignment of the rabbit genes for alpha (PHKA) and beta (PHKB) phosphorylase kinase subunits. Cytogenet Cell Genet. 1992;61(3):208–210. doi: 10.1159/000133409. [DOI] [PubMed] [Google Scholar]
- Farrar Y. J., Carlson G. M. Kinetic characterization of the calmodulin-activated catalytic subunit of phosphorylase kinase. Biochemistry. 1991 Oct 22;30(42):10274–10279. doi: 10.1021/bi00106a027. [DOI] [PubMed] [Google Scholar]
- Forman D. S., Wood D. K., DeSilva S. Rate of regeneration of sensory axons in transected rat sciatic nerve repaired with epineurial sutures. J Neurol Sci. 1979 Dec;44(1):55–59. doi: 10.1016/0022-510x(79)90222-3. [DOI] [PubMed] [Google Scholar]
- Garetto L. P., Carlsen R. C., Lee J. H., Walsh D. A. Calcium-dependent regulation of phosphorylase activation in a fast-twitch oxidative-glycolytic skeletal muscle. Mol Pharmacol. 1988 Feb;33(2):212–217. [PubMed] [Google Scholar]
- Gillespie P. G., Hudspeth A. J. Chemiluminescence detection of proteins from single cells. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2563–2567. doi: 10.1073/pnas.88.6.2563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorin F., Herrick K., Froman B., Palmer W., Tait R., Carlsen R. Botulinum-induced muscle paralysis alters metabolic gene expression and fatigue recovery. Am J Physiol. 1996 Jan;270(1 Pt 2):R238–R245. doi: 10.1152/ajpregu.1996.270.1.R238. [DOI] [PubMed] [Google Scholar]
- Gorin F., Ignacio P., Gelinas R., Carlsen R. Abnormal expression of glycogen phosphorylase genes in regenerated muscle. Am J Physiol. 1989 Sep;257(3 Pt 1):C495–C503. doi: 10.1152/ajpcell.1989.257.3.C495. [DOI] [PubMed] [Google Scholar]
- Grand R. J., Shenolikar S., Cohen P. The amino acid sequence of the delta subunit (calmodulin) of rabbit skeletal muscle phosphorylase kinase. Eur J Biochem. 1981 Jan;113(2):359–367. doi: 10.1111/j.1432-1033.1981.tb05074.x. [DOI] [PubMed] [Google Scholar]
- Gross S. R., Bromwell K. Postnatal development of phosphorylase kinase in mouse skeletal muscle. Arch Biochem Biophys. 1977 Nov;184(1):1–11. doi: 10.1016/0003-9861(77)90320-4. [DOI] [PubMed] [Google Scholar]
- Hare G. M., Evans P. J., Mackinnon S. E., Best T. J., Bain J. R., Szalai J. P., Hunter D. A. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg. 1992 Feb;89(2):251–258. [PubMed] [Google Scholar]
- Heilmeyer L. M., Jr Molecular basis of signal integration in phosphorylase kinase. Biochim Biophys Acta. 1991 Sep 3;1094(2):168–174. doi: 10.1016/0167-4889(91)90005-i. [DOI] [PubMed] [Google Scholar]
- Huang C. Y., Yuan C. J., Livanova N. B., Graves D. J. Expression, purification, characterization, and deletion mutations of phosphorylase kinase gamma subunit: identification of an inhibitory domain in the gamma subunit. Mol Cell Biochem. 1993 Nov;127-128:7–18. doi: 10.1007/BF01076753. [DOI] [PubMed] [Google Scholar]
- James P., Cohen P., Carafoli E. Identification and primary structure of calmodulin binding domains in the phosphorylase kinase holoenzyme. J Biol Chem. 1991 Apr 15;266(11):7087–7091. [PubMed] [Google Scholar]
- Jansen J. K., Fladby T. The perinatal reorganization of the innervation of skeletal muscle in mammals. Prog Neurobiol. 1990;34(1):39–90. doi: 10.1016/0301-0082(90)90025-c. [DOI] [PubMed] [Google Scholar]
- Jones T. A., da Cruz e Silva E. F., Spurr N. K., Sheer D., Cohen P. T. Localisation of the gene encoding the catalytic gamma subunit of phosphorylase kinase to human chromosome bands 7p12-q21. Biochim Biophys Acta. 1990 Jan 30;1048(1):24–29. doi: 10.1016/0167-4781(90)90017-v. [DOI] [PubMed] [Google Scholar]
- Kee S. M., Graves D. J. Isolation and properties of the active gamma subunit of phosphorylase kinase. J Biol Chem. 1986 Apr 5;261(10):4732–4737. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawrence J. C., Jr, Smith R. L. Phosphorylase kinase isozymes and phosphorylase in denervated skeletal muscles. Muscle Nerve. 1990 Feb;13(2):133–137. doi: 10.1002/mus.880130208. [DOI] [PubMed] [Google Scholar]
- Lee J. H., Maeda S., Angelos K. L., Kamita S. G., Ramachandran C., Walsh D. A. Analysis by mutagenesis of the ATP binding site of the gamma subunit of skeletal muscle phosphorylase kinase expressed using a baculovirus system. Biochemistry. 1992 Nov 3;31(43):10616–10625. doi: 10.1021/bi00158a026. [DOI] [PubMed] [Google Scholar]
- Leyland D. M., Turner P. C., Beynon R. J. Effect of denervation on the expression of glycogen phosphorylase in mouse skeletal muscle. Biochem J. 1990 Nov 15;272(1):231–237. doi: 10.1042/bj2720231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McQuarrie I. G., Grafstein B., Gershon M. D. Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res. 1977 Sep 2;132(3):443–453. doi: 10.1016/0006-8993(77)90193-7. [DOI] [PubMed] [Google Scholar]
- Morgan J. E. Phosphorylase kinase activities in damaged mouse skeletal muscles. J Neurol Sci. 1988 Sep;86(2-3):149–158. doi: 10.1016/0022-510x(88)90094-9. [DOI] [PubMed] [Google Scholar]
- Newsholme P., Angelos K. L., Walsh D. A. High and intermediate affinity calmodulin binding domains of the alpha and beta subunits of phosphorylase kinase and their potential role in phosphorylation-dependent activation of the holoenzyme. J Biol Chem. 1992 Jan 15;267(2):810–818. [PubMed] [Google Scholar]
- Nojima H., Sokabe H. Structure of a gene for rat calmodulin. J Mol Biol. 1987 Feb 5;193(3):439–445. doi: 10.1016/0022-2836(87)90258-0. [DOI] [PubMed] [Google Scholar]
- Nojima H. Structural organization of multiple rat calmodulin genes. J Mol Biol. 1989 Jul 20;208(2):269–282. doi: 10.1016/0022-2836(89)90388-4. [DOI] [PubMed] [Google Scholar]
- Novák E., Drummond G. I., Skála J., Hahn P. Developmental changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase in liver, heart, and skeletal muscle of the rat. Arch Biochem Biophys. 1972 Jun;150(2):511–518. doi: 10.1016/0003-9861(72)90069-0. [DOI] [PubMed] [Google Scholar]
- Otten A. D., McKnight G. S. Overexpression of the type II regulatory subunit of the cAMP-dependent protein kinase eliminates the type I holoenzyme in mouse cells. J Biol Chem. 1989 Dec 5;264(34):20255–20260. [PubMed] [Google Scholar]
- Paudel H. K., Carlson G. M. Inhibition of the catalytic subunit of phosphorylase kinase by its alpha/beta subunits. J Biol Chem. 1987 Sep 5;262(25):11912–11915. [PubMed] [Google Scholar]
- Pickett-Gies C. A., Carlsen R. C., Anderson L. J., Angelos K. L., Walsh D. A. Characterization of the isolated rat flexor digitorum brevis for the study of skeletal muscle phosphorylase kinase phosphorylation. J Biol Chem. 1987 Mar 5;262(7):3227–3238. [PubMed] [Google Scholar]
- Pickett-Gies C. A., Walsh D. A. Subunit phosphorylation and activation of skeletal muscle phosphorylase kinase by the cAMP-dependent protein kinase. Divalent metal ion, ATP, and protein concentration dependence. J Biol Chem. 1985 Feb 25;260(4):2046–2056. [PubMed] [Google Scholar]
- Picton C., Klee C. B., Cohen P. Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits. Eur J Biochem. 1980 Oct;111(2):553–561. doi: 10.1111/j.1432-1033.1980.tb04971.x. [DOI] [PubMed] [Google Scholar]
- Ramachandran C., Goris J., Waelkens E., Merlevede W., Walsh D. A. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J Biol Chem. 1987 Mar 5;262(7):3210–3218. [PubMed] [Google Scholar]
- Rich M. M., Lichtman J. W. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J Neurosci. 1989 May;9(5):1781–1805. doi: 10.1523/JNEUROSCI.09-05-01781.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez V. E., Carlson G. M. Isolation of an autoinhibitory region from the regulatory beta-subunit of phosphorylase kinase. J Biol Chem. 1993 Aug 25;268(24):17889–17895. [PubMed] [Google Scholar]
- Senterre-Lesenfants S., Alag A. S., Sobel M. E. Multiple mRNA species are generated by alternate polyadenylation from the human calmodulin-I gene. J Cell Biochem. 1995 Aug;58(4):445–454. doi: 10.1002/jcb.240580407. [DOI] [PubMed] [Google Scholar]
- Shenolikar S., Cohen P. T., Cohen P., Nairn A. C., Perry S. V. The role of calmodulin in the structure and regulation of phosphorylase kinase from rabbit skeletal muscle. Eur J Biochem. 1979 Oct 15;100(2):329–337. doi: 10.1111/j.1432-1033.1979.tb04175.x. [DOI] [PubMed] [Google Scholar]
- Singh T. J., Akatsuka A., Huang K. P. Phosphorylation and activation of rabbit skeletal muscle phosphorylase kinase by a cyclic nucleotide- and Ca2+-independent protein kinase. J Biol Chem. 1982 Nov 25;257(22):13379–13384. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trewhella J., Blumenthal D. K., Rokop S. E., Seeger P. A. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochemistry. 1990 Oct 9;29(40):9316–9324. doi: 10.1021/bi00492a003. [DOI] [PubMed] [Google Scholar]
- Uhler M. D., McKnight G. S. Expression of cDNAs for two isoforms of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1987 Nov 5;262(31):15202–15207. [PubMed] [Google Scholar]
- Vrbová G., Navarrete R., Lowrie M. Matching of muscle properties and motoneurone firing patterns during early stages of development. J Exp Biol. 1985 Mar;115:113–123. doi: 10.1242/jeb.115.1.113. [DOI] [PubMed] [Google Scholar]