Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):31–38. doi: 10.1042/bj3260031

The effects of truncations of the small subunit on m-calpain activity and heterodimer formation.

J S Elce 1, P L Davies 1, C Hegadorn 1, D H Maurice 1, J S Arthur 1
PMCID: PMC1218633  PMID: 9337847

Abstract

In order to study subunit interactions in calpain, the effects of small subunit truncations on m-calpain activity and heterodimer formation have been measured. It has been shown previously that active calpain is formed by co-expression of the large subunit (80 kDa) of rat m-calpain with a delta 86 form (21 kDa) of the small subunit. cDNA for the full-length 270 amino acid (28.5 kDa) rat calpain small subunit has now been cloned, both with and without an N-terminal histidine tag (NHis10). The full-length small subunit constructs yielded active calpains on co-expression with the large subunit, and the small subunit was autolysed to 20 kDa on exposure of these calpains to Ca2+. A series of deletion mutants of the small subunit, NHis10-delta 86, -delta 99, -delta 107, and -delta 116, gave active heterodimeric calpains with unchanged specific activities, although in decreasing yield, and with a progressive decrease in stability. NHis10-delta 125 formed a heterodimer which was inactive and unstable. Removal of 25 C-terminal residues from delta 86, leaving residues 87-245, abolished both activity and heterodimer formation. The results show that: (a) generation of active m-calpain in Escherichia coli requires heterodimer formation; (b) small subunit residues between 94 and 116 contribute to the stability of the active heterodimer but do not directly affect the catalytic mechanism; (c) residues in the region 245-270 are essential for subunit binding. Finally, it was shown that an inactive mutant Cys103-->Ser-80k/delta 86 calpain, used in order to preclude autolysis, did not dissociate in the presence of Ca2+, a result which does not support the proposal that Ca(2+)-induced dissociation is involved in calpain activation.

Full Text

The Full Text of this article is available as a PDF (524.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur J. S., Gauthier S., Elce J. S. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 1995 Jul 24;368(3):397–400. doi: 10.1016/0014-5793(95)00691-2. [DOI] [PubMed] [Google Scholar]
  2. Blanchard H., Grochulski P., Li Y., Arthur J. S., Davies P. L., Elce J. S., Cygler M. Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. Nat Struct Biol. 1997 Jul;4(7):532–538. doi: 10.1038/nsb0797-532. [DOI] [PubMed] [Google Scholar]
  3. Blanchard H., Li Y., Cygler M., Kay C. M., Simon J., Arthur C., Davies P. L., Elce J. S. Ca(2+)-binding domain VI of rat calpain is a homodimer in solution: hydrodynamic, crystallization and preliminary X-ray diffraction studies. Protein Sci. 1996 Mar;5(3):535–537. doi: 10.1002/pro.5560050317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford C., Brown N. R., Willis A. C. Studies of the active site of m-calpain and the interaction with calpastatin. Biochem J. 1993 Nov 15;296(Pt 1):135–142. doi: 10.1042/bj2960135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Croall D. E., DeMartino G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):813–847. doi: 10.1152/physrev.1991.71.3.813. [DOI] [PubMed] [Google Scholar]
  6. DeLuca C. I., Davies P. L., Samis J. A., Elce J. S. Molecular cloning and bacterial expression of cDNA for rat calpain II 80 kDa subunit. Biochim Biophys Acta. 1993 Oct 19;1216(1):81–93. doi: 10.1016/0167-4781(93)90040-k. [DOI] [PubMed] [Google Scholar]
  7. Elce J. S., Hegadorn C., Arthur J. S. Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain. J Biol Chem. 1997 Apr 25;272(17):11268–11275. doi: 10.1074/jbc.272.17.11268. [DOI] [PubMed] [Google Scholar]
  8. Elce J. S., Hegadorn C., Gauthier S., Vince J. W., Davies P. L. Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng. 1995 Aug;8(8):843–848. doi: 10.1093/protein/8.8.843. [DOI] [PubMed] [Google Scholar]
  9. Emori Y., Kawasaki H., Imajoh S., Kawashima S., Suzuki K. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J Biol Chem. 1986 Jul 15;261(20):9472–9476. [PubMed] [Google Scholar]
  10. Goll D. E., Thompson V. F., Taylor R. G., Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays. 1992 Aug;14(8):549–556. doi: 10.1002/bies.950140810. [DOI] [PubMed] [Google Scholar]
  11. Graham-Siegenthaler K., Gauthier S., Davies P. L., Elce J. S. Active recombinant rat calpain II. Bacterially produced large and small subunits associate both in vivo and in vitro. J Biol Chem. 1994 Dec 2;269(48):30457–30460. [PubMed] [Google Scholar]
  12. Imajoh S., Kawasaki H., Suzuki K. Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. J Biochem. 1986 Sep;100(3):633–642. doi: 10.1093/oxfordjournals.jbchem.a121755. [DOI] [PubMed] [Google Scholar]
  13. Imajoh S., Kawasaki H., Suzuki K. The COOH-terminal E-F hand structure of calcium-activated neutral protease (CANP) is important for the association of subunits and resulting proteolytic activity. J Biochem. 1987 Feb;101(2):447–452. doi: 10.1093/oxfordjournals.jbchem.a121930. [DOI] [PubMed] [Google Scholar]
  14. Kendall R. L., Yamada R., Bradshaw R. A. Cotranslational amino-terminal processing. Methods Enzymol. 1990;185:398–407. doi: 10.1016/0076-6879(90)85035-m. [DOI] [PubMed] [Google Scholar]
  15. Kikuchi T., Yumoto N., Sasaki T., Murachi T. Reconstitution of calpain I and calpain II from their subunits: interchangeability of the light subunits. Arch Biochem Biophys. 1984 Nov 1;234(2):639–645. doi: 10.1016/0003-9861(84)90314-x. [DOI] [PubMed] [Google Scholar]
  16. McCelland P., Lash J. A., Hathaway D. R. Identification of major autolytic cleavage sites in the regulatory subunit of vascular calpain II. A comparison of partial amino-terminal sequences to deduced sequence from complementary DNA. J Biol Chem. 1989 Oct 15;264(29):17428–17431. [PubMed] [Google Scholar]
  17. Minami Y., Emori Y., Imajoh-Ohmi S., Kawasaki H., Suzuki K. Carboxyl-terminal truncation and site-directed mutagenesis of the EF hand structure-domain of the small subunit of rabbit calcium-dependent protease. J Biochem. 1988 Dec;104(6):927–933. doi: 10.1093/oxfordjournals.jbchem.a122585. [DOI] [PubMed] [Google Scholar]
  18. Minami Y., Emori Y., Kawasaki H., Suzuki K. E-F hand structure-domain of calcium-activated neutral protease (CANP) can bind Ca2+ ions. J Biochem. 1987 Apr;101(4):889–895. doi: 10.1093/oxfordjournals.jbchem.a121956. [DOI] [PubMed] [Google Scholar]
  19. Nishimura T., Goll D. E. Binding of calpain fragments to calpastatin. J Biol Chem. 1991 Jun 25;266(18):11842–11850. [PubMed] [Google Scholar]
  20. Ohno S., Emori Y., Imajoh S., Kawasaki H., Kisaragi M., Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. doi: 10.1038/312566a0. [DOI] [PubMed] [Google Scholar]
  21. Saido T. C., Nagao S., Shiramine M., Tsukaguchi M., Yoshizawa T., Sorimachi H., Ito H., Tsuchiya T., Kawashima S., Suzuki K. Distinct kinetics of subunit autolysis in mammalian m-calpain activation. FEBS Lett. 1994 Jun 13;346(2-3):263–267. doi: 10.1016/0014-5793(94)00487-0. [DOI] [PubMed] [Google Scholar]
  22. Sorimachi H., Amano S., Ishiura S., Suzuki K. Primary sequences of rat mu-calpain large and small subunits are, respectively, moderately and highly similar to those of human. Biochim Biophys Acta. 1996 Nov 11;1309(1-2):37–41. doi: 10.1016/s0167-4781(96)00135-2. [DOI] [PubMed] [Google Scholar]
  23. Theopold U., Pintér M., Daffre S., Tryselius Y., Friedrich P., Nässel D. R., Hultmark D. CalpA, a Drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol Cell Biol. 1995 Feb;15(2):824–834. doi: 10.1128/mcb.15.2.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. A catalytic subunit of calpain possesses full proteolytic activity. FEBS Lett. 1995 Jan 16;358(1):101–103. doi: 10.1016/0014-5793(94)01401-l. [DOI] [PubMed] [Google Scholar]
  25. Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun. 1995 Mar 8;208(1):376–383. doi: 10.1006/bbrc.1995.1348. [DOI] [PubMed] [Google Scholar]
  26. Zhang W., Mellgren R. L. Calpain subunits remain associated during catalysis. Biochem Biophys Res Commun. 1996 Oct 23;227(3):891–896. [PubMed] [Google Scholar]
  27. Zimmerman U. J., Schlaepfer W. W. Activation of calpain I and calpain II: a comparative study using terbium as a fluorescent probe for calcium-binding sites. Arch Biochem Biophys. 1988 Nov 1;266(2):462–469. doi: 10.1016/0003-9861(88)90278-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES