Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):39–45. doi: 10.1042/bj3260039

Synthetic histatin analogues with broad-spectrum antimicrobial activity.

E J Helmerhorst 1, W Van't Hof 1, E C Veerman 1, I Simoons-Smit 1, A V Nieuw Amerongen 1
PMCID: PMC1218634  PMID: 9337848

Abstract

Histatins are salivary histidine-rich cationic peptides, ranging from 7 to 38 amino acid residues in length, that exert a potent killing effect in vitro on Candida albicans. Starting from the C-terminal fungicidal domain of histatin 5 (residues 11-24, called dh-5) a number of substitution analogues were chemically synthesized to study the effect of amphipathicity of the peptide in helix conformation on candidacidal activity. Single substitutions in dh-5 at several positions did not have any effect on fungicidal activity. However, multi-site substituted analogues (dhvar1 and dhvar2) exhibited a 6-fold increased activity over dh-5. In addition, dhvar1 and dhvar2 inhibited the growth of the second most common yeast found in clinical isolates, Torulopsis glabrata, of oral- and non-oral pathogens such as Prevotella intermedia and Streptococcus mutans, and of a methicillin-resistant Staphylococcus aureus. In their broad-spectrum activity, dhvar1 and dhvar2 were comparable to magainins (PGLa and magainin 2), antimicrobial peptides of amphibian origin. Both the fungicidal and the haemolytic activities of dhvar1, dhvar2 and magainins increased at decreasing ionic strength.

Full Text

The Full Text of this article is available as a PDF (431.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck-Sickinger A. G., Dürr H., Jung G. Semiautomated T-bag peptide synthesis using 9-fluorenyl-methoxycarbonyl strategy and benzotriazol-1-yl-tetramethyl-uronium tetrafluoroborate activation. Pept Res. 1991 Mar-Apr;4(2):88–94. [PubMed] [Google Scholar]
  2. Blondelle S. E., Houghten R. A. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992 Dec 22;31(50):12688–12694. doi: 10.1021/bi00165a020. [DOI] [PubMed] [Google Scholar]
  3. Blondelle S. E., Takahashi E., Dinh K. T., Houghten R. A. The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries. J Appl Bacteriol. 1995 Jan;78(1):39–46. doi: 10.1111/j.1365-2672.1995.tb01671.x. [DOI] [PubMed] [Google Scholar]
  4. Brant E. C., Santarpia R. P., 3rd, Pollock J. J. Role of pH in salivary histidine-rich polypeptide antifungal germ tube inhibitory activity. Oral Microbiol Immunol. 1990 Dec;5(6):336–339. doi: 10.1111/j.1399-302x.1990.tb00437.x. [DOI] [PubMed] [Google Scholar]
  5. Cannon R. D., Holmes A. R., Mason A. B., Monk B. C. Oral Candida: clearance, colonization, or candidiasis? J Dent Res. 1995 May;74(5):1152–1161. doi: 10.1177/00220345950740050301. [DOI] [PubMed] [Google Scholar]
  6. Carrier D., Pézolet M. Investigation of polylysine-dipalmitoylphosphatidylglycerol interactions in model membranes. Biochemistry. 1986 Jul 15;25(14):4167–4174. doi: 10.1021/bi00362a027. [DOI] [PubMed] [Google Scholar]
  7. Chen H. C., Brown J. H., Morell J. L., Huang C. M. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 1988 Aug 29;236(2):462–466. doi: 10.1016/0014-5793(88)80077-2. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Georgopapadakou N. H., Walsh T. J. Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother. 1996 Feb;40(2):279–291. doi: 10.1128/aac.40.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hultmark D., Engström A., Andersson K., Steiner H., Bennich H., Boman H. G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571–576. doi: 10.1002/j.1460-2075.1983.tb01465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iijima R., Kurata S., Natori S. Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem. 1993 Jun 5;268(16):12055–12061. [PubMed] [Google Scholar]
  12. Jones E. M., Smart A., Bloomberg G., Burgess L., Millar M. R. Lactoferricin, a new antimicrobial peptide. J Appl Bacteriol. 1994 Aug;77(2):208–214. doi: 10.1111/j.1365-2672.1994.tb03065.x. [DOI] [PubMed] [Google Scholar]
  13. Law D., Moore C. B., Wardle H. M., Ganguli L. A., Keaney M. G., Denning D. W. High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother. 1994 Nov;34(5):659–668. doi: 10.1093/jac/34.5.659. [DOI] [PubMed] [Google Scholar]
  14. MacKay B. J., Denepitiya L., Iacono V. J., Krost S. B., Pollock J. J. Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans. Infect Immun. 1984 Jun;44(3):695–701. doi: 10.1128/iai.44.3.695-701.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
  16. Matsuzaki K., Harada M., Funakoshi S., Fujii N., Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta. 1991 Mar 18;1063(1):162–170. doi: 10.1016/0005-2736(91)90366-g. [DOI] [PubMed] [Google Scholar]
  17. Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
  18. Miyasaki K. T., Bodeau A. L., Ganz T., Selsted M. E., Lehrer R. I. In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect Immun. 1990 Dec;58(12):3934–3940. doi: 10.1128/iai.58.12.3934-3940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mor A., Nicolas P. The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem. 1994 Jan 21;269(3):1934–1939. [PubMed] [Google Scholar]
  20. Nishikata M., Kanehira T., Oh H., Tani H., Tazaki M., Kuboki Y. Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem Biophys Res Commun. 1991 Jan 31;174(2):625–630. doi: 10.1016/0006-291x(91)91463-m. [DOI] [PubMed] [Google Scholar]
  21. Ojcius D. M., Young J. D. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem Sci. 1991 Jun;16(6):225–229. doi: 10.1016/0968-0004(91)90090-i. [DOI] [PubMed] [Google Scholar]
  22. Oppenheim F. G., Xu T., McMillian F. M., Levitz S. M., Diamond R. D., Offner G. D., Troxler R. F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem. 1988 Jun 5;263(16):7472–7477. [PubMed] [Google Scholar]
  23. Oppenheim F. G., Yang Y. C., Diamond R. D., Hyslop D., Offner G. D., Troxler R. F. The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J Biol Chem. 1986 Jan 25;261(3):1177–1182. [PubMed] [Google Scholar]
  24. Pathak N., Salas-Auvert R., Ruche G., Janna M. H., McCarthy D., Harrison R. G. Comparison of the effects of hydrophobicity, amphiphilicity, and alpha-helicity on the activities of antimicrobial peptides. Proteins. 1995 Jun;22(2):182–186. doi: 10.1002/prot.340220210. [DOI] [PubMed] [Google Scholar]
  25. Pollock J. J., Denepitiya L., MacKay B. J., Iacono V. J. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun. 1984 Jun;44(3):702–707. doi: 10.1128/iai.44.3.702-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pérez-Payá E., Houghten R. A., Blondelle S. E. The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J Biol Chem. 1995 Jan 20;270(3):1048–1056. doi: 10.1074/jbc.270.3.1048. [DOI] [PubMed] [Google Scholar]
  27. Raj P. A., Edgerton M., Levine M. J. Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem. 1990 Mar 5;265(7):3898–3905. [PubMed] [Google Scholar]
  28. Raj P. A., Soni S. D., Levine M. J. Membrane-induced helical conformation of an active candidacidal fragment of salivary histatins. J Biol Chem. 1994 Apr 1;269(13):9610–9619. [PubMed] [Google Scholar]
  29. Rayhan R., Xu L., Santarpia R. P., 3rd, Tylenda C. A., Pollock J. J. Antifungal activities of salivary histidine-rich polypeptides against Candida albicans and other oral yeast isolates. Oral Microbiol Immunol. 1992 Feb;7(1):51–52. doi: 10.1111/j.1399-302x.1992.tb00020.x. [DOI] [PubMed] [Google Scholar]
  30. Saberwal G., Nagaraj R. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta. 1994 Jun 29;1197(2):109–131. doi: 10.1016/0304-4157(94)90002-7. [DOI] [PubMed] [Google Scholar]
  31. Schonwetter B. S., Stolzenberg E. D., Zasloff M. A. Epithelial antibiotics induced at sites of inflammation. Science. 1995 Mar 17;267(5204):1645–1648. doi: 10.1126/science.7886453. [DOI] [PubMed] [Google Scholar]
  32. Selsted M. E., Szklarek D., Ganz T., Lehrer R. I. Activity of rabbit leukocyte peptides against Candida albicans. Infect Immun. 1985 Jul;49(1):202–206. doi: 10.1128/iai.49.1.202-206.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shima S., Matsuoka H., Iwamoto T., Sakai H. Antimicrobial action of epsilon-poly-L-lysine. J Antibiot (Tokyo) 1984 Nov;37(11):1449–1455. doi: 10.7164/antibiotics.37.1449. [DOI] [PubMed] [Google Scholar]
  34. Steiner H., Andreu D., Merrifield R. B. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta. 1988 Apr 7;939(2):260–266. doi: 10.1016/0005-2736(88)90069-7. [DOI] [PubMed] [Google Scholar]
  35. Thennarasu S., Nagaraj R. Design of 16-residue peptides possessing antimicrobial and hemolytic activities or only antimicrobial activity from an inactive peptide. Int J Pept Protein Res. 1995 Dec;46(6):480–486. doi: 10.1111/j.1399-3011.1995.tb01603.x. [DOI] [PubMed] [Google Scholar]
  36. Troxler R. F., Offner G. D., Xu T., Vanderspek J. C., Oppenheim F. G. Structural relationship between human salivary histatins. J Dent Res. 1990 Jan;69(1):2–6. doi: 10.1177/00220345900690010101. [DOI] [PubMed] [Google Scholar]
  37. Tytler E. M., Anantharamaiah G. M., Walker D. E., Mishra V. K., Palgunachari M. N., Segrest J. P. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry. 1995 Apr 4;34(13):4393–4401. doi: 10.1021/bi00013a031. [DOI] [PubMed] [Google Scholar]
  38. Vaz Gomes A., de Waal A., Berden J. A., Westerhoff H. V. Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes. Biochemistry. 1993 May 25;32(20):5365–5372. doi: 10.1021/bi00071a011. [DOI] [PubMed] [Google Scholar]
  39. Westerhoff H. V., Zasloff M., Rosner J. L., Hendler R. W., De Waal A., Vaz Gomes A., Jongsma P. M., Riethorst A., Juretić D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem. 1995 Mar 1;228(2):257–264. [PubMed] [Google Scholar]
  40. Wolff A., Moreira J. E., Bevins C. L., Hand A. R., Fox P. C. Magainin-like immunoreactivity in human submandibular and labial salivary glands. J Histochem Cytochem. 1990 Nov;38(11):1531–1534. doi: 10.1177/38.11.2212614. [DOI] [PubMed] [Google Scholar]
  41. Xu T., Levitz S. M., Diamond R. D., Oppenheim F. G. Anticandidal activity of major human salivary histatins. Infect Immun. 1991 Aug;59(8):2549–2554. doi: 10.1128/iai.59.8.2549-2554.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van 't Hof W., Driedijk P. C., van den Berg M., Beck-Sickinger A. G., Jung G., Aalberse R. C. Epitope mapping of the Dermatophagoides pteronyssinus house dust mite major allergen Der p II using overlapping synthetic peptides. Mol Immunol. 1991 Nov;28(11):1225–1232. doi: 10.1016/0161-5890(91)90009-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES