Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):47–51. doi: 10.1042/bj3260047

Identification by site-directed mutagenesis of three essential histidine residues in membrane dipeptidase, a novel mammalian zinc peptidase.

S Keynan 1, N M Hooper 1, A J Turner 1
PMCID: PMC1218635  PMID: 9337849

Abstract

Membrane dipeptidase (EC 3.4.13.19) is a plasma membrane zinc peptidase that is involved in the renal metabolism of glutathione and its conjugates, such as leukotriene D4. The enzyme lacks the classical signatures of other zinc-dependent hydrolases and shows no homology with any other mammalian protein. We have used site-directed mutagenesis to explore the roles of five histidine residues in pig membrane dipeptidase that are conserved among mammalian species. When expressed in COS-1 cells, the mutants H49K and H128L exhibited a specific activity and Km for the substrate Gly-D-Phe comparable with those of the wild-type enzyme. However, the mutants H20L, H152L and H198K were inactive, but were expressed at the cell surface at equivalent levels to the wild-type, as assessed by immunoblotting and immunofluorescence. These three mutants were compared with regard to their ability to bind to the competitive inhibitor cilastatin, which binds with equal efficacy to native and EDTA-treated pig kidney membrane dipeptidase. Expressed wild-type enzyme and mutants H20L and H198K were efficiently bound by cilastatin-Sepharose, but H152L failed to bind. Thus His-152 appears to be involved in the binding of substrate or inhibitor, whereas His-20 and His-198 appear to be involved in catalysis. Membrane dipeptidase shares some similarity with a dipeptidase recently cloned from Acinetobacter calcoaceticus. In particular, His-20 and His-198 of membrane dipeptidase are conserved in the bacterial enzyme, as are Glu-125 and His-219, previously shown to be required for catalytic activity.

Full Text

The Full Text of this article is available as a PDF (276.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi H., Ishida N., Tsujimoto M. Primary structure of rat renal dipeptidase and expression of its mRNA in rat tissues and COS-1 cells. Biochim Biophys Acta. 1992 Oct 20;1132(3):311–314. doi: 10.1016/0167-4781(92)90167-x. [DOI] [PubMed] [Google Scholar]
  2. Adachi H., Katayama T., Nakazato H., Tsujimoto M. Importance of Glu-125 in the catalytic activity of human renal dipeptidase. Biochim Biophys Acta. 1993 Apr 21;1163(1):42–48. doi: 10.1016/0167-4838(93)90276-w. [DOI] [PubMed] [Google Scholar]
  3. Adachi H., Tawaragi Y., Inuzuka C., Kubota I., Tsujimoto M., Nishihara T., Nakazato H. Primary structure of human microsomal dipeptidase deduced from molecular cloning. J Biol Chem. 1990 Mar 5;265(7):3992–3995. [PubMed] [Google Scholar]
  4. Adachi H., Tsujimoto M. Cloning and expression of dipeptidase from Acinetobacter calcoaceticus ATCC 23055. J Biochem. 1995 Sep;118(3):555–561. doi: 10.1093/oxfordjournals.jbchem.a124945. [DOI] [PubMed] [Google Scholar]
  5. An S., Schmidt F. J., Campbell B. J. Molecular cloning of sheep lung dipeptidase: a glycosyl phosphatidylinositol-anchored ectoenzyme that converts leukotriene D4 to leukotriene E4. Biochim Biophys Acta. 1994 Jul 18;1226(3):337–340. doi: 10.1016/0925-4439(94)90046-9. [DOI] [PubMed] [Google Scholar]
  6. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  7. Brewis I. A., Ferguson M. A., Mehlert A., Turner A. J., Hooper N. M. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem. 1995 Sep 29;270(39):22946–22956. doi: 10.1074/jbc.270.39.22946. [DOI] [PubMed] [Google Scholar]
  8. Campbell B. J., Baker S. F., Shukla S. D., Forrester L. J., Zahler W. L. Bioconversion of leukotriene D4 by lung dipeptidase. Biochim Biophys Acta. 1990 Jan 16;1042(1):107–112. doi: 10.1016/0005-2760(90)90063-4. [DOI] [PubMed] [Google Scholar]
  9. Campbell B. J., Forrester L. J., Zahler W. L., Burks M. Beta-lactamase activity of purified and partially characterized human renal dipeptidase. J Biol Chem. 1984 Dec 10;259(23):14586–14590. [PubMed] [Google Scholar]
  10. Campbell B. J., Lin Y. C., Davis R. V., Ballew E. The purification and properties of a particulate renal dipeptidase. Biochim Biophys Acta. 1966 May 5;118(2):371–386. doi: 10.1016/s0926-6593(66)80046-2. [DOI] [PubMed] [Google Scholar]
  11. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  12. Hooper N. M., Keen J. N., Turner A. J. Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J. 1990 Jan 15;265(2):429–433. doi: 10.1042/bj2650429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hooper N. M., Low M. G., Turner A. J. Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C. Biochem J. 1987 Jun 1;244(2):465–469. doi: 10.1042/bj2440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Isolation and characterization of the amphipathic form of renal dipeptidase and hydrolysis of its glycosyl-phosphatidylinositol anchor by an activity in plasma. Biochem J. 1989 Aug 1;261(3):811–818. doi: 10.1042/bj2610811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Igarashi P., Karniski L. P. Cloning of cDNAs encoding a rabbit renal brush border membrane protein immunologically related to band 3. Sequence similarity with microsomal dipeptidase. Biochem J. 1991 Nov 15;280(Pt 1):71–78. doi: 10.1042/bj2800071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joris B., Van Beeumen J., Casagrande F., Gerday C., Frère J. M., Ghuysen J. M. The complete amino acid sequence of the Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase of streptomyces albus G. Eur J Biochem. 1983 Jan 17;130(1):53–69. doi: 10.1111/j.1432-1033.1983.tb07116.x. [DOI] [PubMed] [Google Scholar]
  17. Kahan F. M., Kropp H., Sundelof J. G., Birnbaum J. Thienamycin: development of imipenen-cilastatin. J Antimicrob Chemother. 1983 Dec;12 (Suppl 500):1–35. doi: 10.1093/jac/12.suppl_d.1. [DOI] [PubMed] [Google Scholar]
  18. Keynan S., Habgood N. T., Hooper N. M., Turner A. J. Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulfide-linked dimerization. Biochemistry. 1996 Sep 24;35(38):12511–12517. doi: 10.1021/bi961193z. [DOI] [PubMed] [Google Scholar]
  19. Keynan S., Hooper N. M., Felici A., Amicosante G., Turner A. J. The renal membrane dipeptidase (dehydropeptidase I) inhibitor, cilastatin, inhibits the bacterial metallo-beta-lactamase enzyme CphA. Antimicrob Agents Chemother. 1995 Jul;39(7):1629–1631. doi: 10.1128/aac.39.7.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keynan S., Hooper N. M., Turner A. J. Directed mutagenesis of pig renal membrane dipeptidase. His219 is critical but the DHXXH motif is not essential for zinc binding or catalytic activity. FEBS Lett. 1994 Jul 25;349(1):50–54. doi: 10.1016/0014-5793(94)00637-7. [DOI] [PubMed] [Google Scholar]
  21. Kropp H., Sundelof J. G., Hajdu R., Kahan F. M. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982 Jul;22(1):62–70. doi: 10.1128/aac.22.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Littlewood G. M., Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase. Biochem J. 1989 Jan 15;257(2):361–367. doi: 10.1042/bj2570361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rached E., Hooper N. M., James P., Semenza G., Turner A. J., Mantei N. cDNA cloning and expression in Xenopus laevis oocytes of pig renal dipeptidase, a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J. 1990 Nov 1;271(3):755–760. doi: 10.1042/bj2710755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rawlings N. D., Barrett A. J. Evolutionary families of metallopeptidases. Methods Enzymol. 1995;248:183–228. doi: 10.1016/0076-6879(95)48015-3. [DOI] [PubMed] [Google Scholar]
  28. Satoh S., Keida Y., Konta Y., Maeda M., Matsumoto Y., Niwa M., Kohsaka M. Purification and molecular cloning of mouse renal dipeptidase. Biochim Biophys Acta. 1993 Jun 4;1163(3):234–242. doi: 10.1016/0167-4838(93)90157-m. [DOI] [PubMed] [Google Scholar]
  29. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williams T. A., Barnes K., Kenny A. J., Turner A. J., Hooper N. M. A comparison of the zinc contents and substrate specificities of the endothelial and testicular forms of porcine angiotensin converting enzyme and the preparation of isoenzyme-specific antisera. Biochem J. 1992 Dec 15;288(Pt 3):875–881. doi: 10.1042/bj2880875. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES