Abstract
The reaction of hydrogen peroxide with a number of variants of sperm-whale myoglobin in which the distal pocket histidine residue (His64) had been mutated was studied with a combination of stopped-flow spectroscopy and freeze-quench EPR. The rate of the initial bimolecular reaction with hydrogen peroxide in all the proteins studied was found to depend on the polarity of the amino acid side chain at position 64. In wild-type myoglobin there were no significant optical changes subsequent to this reaction, suggesting the rapid formation of the well-characterized oxyferryl species. This conclusion was supported by freeze-quench EPR data, which were consistent with the pattern of reactivity previously reported [King and Winfield (1963) J. Biol. Chem. 238, 1520-1528]. In those myoglobins bearing a mutation at position 64, the initial bimolecular reaction with hydrogen peroxide yielded an intermediate species that subsequently decayed via a second hydrogen peroxide-dependent step leading to modification or destruction of the haem. In the mutant His64-->Gln the calculated electronic absorption spectrum of the intermediate was not that of an oxyferryl species but seemed to be that of a low-spin ferric haem. Freeze-quench EPR studies of this mutant and the apolar mutant (His64-->Val) revealed the accumulation of a novel intermediate after the first hydrogen peroxide-dependent reaction. The unusual EPR characteristics of this species are provisionally assigned to a low-spin ferric haem with bound peroxide as the distal ligand. These results are interpreted in terms of a reaction scheme in which the polarity of the distal pocket governs the rate of binding of hydrogen peroxide to the haem iron and the residue at position 64 governs both the rate of heterolytic oxygen scission and the stability of the oxyferryl product.
Full Text
The Full Text of this article is available as a PDF (442.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrosio G., Santoro G., Tritto I., Elia P. P., Duilio C., Basso A., Scognamiglio A., Chiariello M. Effects of ischemia and reperfusion on cardiac tolerance to oxidative stress. Am J Physiol. 1992 Jan;262(1 Pt 2):H23–H30. doi: 10.1152/ajpheart.1992.262.1.H23. [DOI] [PubMed] [Google Scholar]
- Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
- Blackmore R. S., Brittain T., Greenwood C. An analysis of the reaction kinetics of the hexahaem nitrite reductase of the anaerobic rumen bacterium Wolinella succinogenes. Biochem J. 1990 Oct 15;271(2):457–461. doi: 10.1042/bj2710457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Smerdon S. J., Wilkinson A. J., Dou Y., Keenan D., Ikeda-Saito M., Brantley R. E., Jr Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem. 1994 May 13;269(19):13843–13853. [PubMed] [Google Scholar]
- Brittain T., Little R. H., Greenwood C., Watmough N. J. The reaction of Escherichia coli cytochrome bo with H2O2: evidence for the formation of an oxyferryl species by two distinct routes. FEBS Lett. 1996 Dec 9;399(1-2):21–25. doi: 10.1016/s0014-5793(96)01253-7. [DOI] [PubMed] [Google Scholar]
- Carver T. E., Rohlfs R. J., Olson J. S., Gibson Q. H., Blackmore R. S., Springer B. A., Sligar S. G. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques. J Biol Chem. 1990 Nov 15;265(32):20007–20020. [PubMed] [Google Scholar]
- Chance M., Powers L., Kumar C., Chance B. X-ray absorption studies of myoglobin peroxide reveal functional differences between globins and heme enzymes. Biochemistry. 1986 Mar 25;25(6):1259–1265. doi: 10.1021/bi00354a010. [DOI] [PubMed] [Google Scholar]
- Choe Y. S., Rao S. I., Ortiz de Montellano P. R. Requirement of a second oxidation equivalent for ferryl oxygen transfer to styrene in the epoxidation catalyzed by myoglobin-H2O2. Arch Biochem Biophys. 1994 Oct;314(1):126–131. doi: 10.1006/abbi.1994.1420. [DOI] [PubMed] [Google Scholar]
- Dou Y., Olson J. S., Wilkinson A. J., Ikeda-Saito M. Mechanism of hydrogen cyanide binding to myoglobin. Biochemistry. 1996 Jun 4;35(22):7107–7113. doi: 10.1021/bi9600299. [DOI] [PubMed] [Google Scholar]
- Erman J. E., Vitello L. B., Miller M. A., Shaw A., Brown K. A., Kraut J. Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I. Biochemistry. 1993 Sep 21;32(37):9798–9806. doi: 10.1021/bi00088a035. [DOI] [PubMed] [Google Scholar]
- Ferguson-Miller Shelagh, Babcock Gerald T. Heme/Copper Terminal Oxidases. Chem Rev. 1996 Nov 7;96(7):2889–2908. doi: 10.1021/cr950051s. [DOI] [PubMed] [Google Scholar]
- Foote N., Gadsby P. M., Greenwood C., Thomson A. J. pH-dependent forms of the ferryl haem in myoglobin peroxide analysed by variable-temperature magnetic circular dichroism. Biochem J. 1989 Jul 15;261(2):515–522. doi: 10.1042/bj2610515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galaris D., Sevanian A., Cadenas E., Hochstein P. Ferrylmyoglobin-catalyzed linoleic acid peroxidation. Arch Biochem Biophys. 1990 Aug 15;281(1):163–169. doi: 10.1016/0003-9861(90)90427-z. [DOI] [PubMed] [Google Scholar]
- Gunther M. R., Kelman D. J., Corbett J. T., Mason R. P. Self-peroxidation of metmyoglobin results in formation of an oxygen-reactive tryptophan-centered radical. J Biol Chem. 1995 Jul 7;270(27):16075–16081. doi: 10.1074/jbc.270.27.16075. [DOI] [PubMed] [Google Scholar]
- Gurd F. R., Falk K. E., Malmström B. G., Vänngård T. A magnetic resonance study of sperm whale ferrimyoglobin and its complex with 1 cupric ion. J Biol Chem. 1967 Dec 25;242(24):5724–5730. [PubMed] [Google Scholar]
- Harada K., Yamazaki I. Electron spin resonance spectra of free radicals formed in the reaction of metmyoglobins with ethylhydroperoxide. J Biochem. 1987 Jan;101(1):283–286. doi: 10.1093/oxfordjournals.jbchem.a121903. [DOI] [PubMed] [Google Scholar]
- Hargrove M. S., Singleton E. W., Quillin M. L., Ortiz L. A., Phillips G. N., Jr, Olson J. S., Mathews A. J. His64(E7)-->Tyr apomyoglobin as a reagent for measuring rates of hemin dissociation. J Biol Chem. 1994 Feb 11;269(6):4207–4214. doi: 10.2210/pdb1mgn/pdb. [DOI] [PubMed] [Google Scholar]
- KING N. K., WINFIELD M. E. The mechanism of metmyoglobin oxidation. J Biol Chem. 1963 Apr;238:1520–1528. [PubMed] [Google Scholar]
- Lauraeus M., Morgan J. E., Wikström M. Peroxy and ferryl intermediates of the quinol-oxidizing cytochrome aa3 from Bacillus subtilis. Biochemistry. 1993 Mar 16;32(10):2664–2670. doi: 10.1021/bi00061a026. [DOI] [PubMed] [Google Scholar]
- Miki H., Harada K., Yamazaki I., Tamura M., Watanabe H. Electron spin resonance spectrum of Tyr-151 free radical formed in reactions of sperm whale metmyoglobin with ethyl hydroperoxide and potassium irridate. Arch Biochem Biophys. 1989 Dec;275(2):354–362. doi: 10.1016/0003-9861(89)90382-2. [DOI] [PubMed] [Google Scholar]
- Morgan J. E., Verkhovsky M. I., Puustinen A., Wikström M. Identification of a "peroxy" intermediate in cytochrome bo3 of Escherichia coli. Biochemistry. 1995 Dec 5;34(48):15633–15637. doi: 10.1021/bi00048a005. [DOI] [PubMed] [Google Scholar]
- Morgan J. E., Verkhovsky M. I., Wikström M. Observation and assignment of peroxy and ferryl intermediates in the reduction of dioxygen to water by cytochrome c oxidase. Biochemistry. 1996 Sep 24;35(38):12235–12240. doi: 10.1021/bi961634e. [DOI] [PubMed] [Google Scholar]
- Olson J. S., Phillips G. N., Jr Kinetic pathways and barriers for ligand binding to myoglobin. J Biol Chem. 1996 Jul 26;271(30):17593–17596. doi: 10.1074/jbc.271.30.17593. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Kraut J. The stereochemistry of peroxidase catalysis. J Biol Chem. 1980 Sep 10;255(17):8199–8205. [PubMed] [Google Scholar]
- Proshlyakov D. A., Ogura T., Shinzawa-Itoh K., Yoshikawa S., Kitagawa T. Microcirculating system for simultaneous determination of Raman and absorption spectra of enzymatic reaction intermediates and its application to the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry. 1996 Jan 9;35(1):76–82. doi: 10.1021/bi9511705. [DOI] [PubMed] [Google Scholar]
- Quillin M. L., Arduini R. M., Olson J. S., Phillips G. N., Jr High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J Mol Biol. 1993 Nov 5;234(1):140–155. doi: 10.1006/jmbi.1993.1569. [DOI] [PubMed] [Google Scholar]
- Rao S. I., Wilks A., Ortiz de Montellano P. R. The roles of His-64, Tyr-103, Tyr-146, and Tyr-151 in the epoxidation of styrene and beta-methylstyrene by recombinant sperm whale myoglobin. J Biol Chem. 1993 Jan 15;268(2):803–809. [PubMed] [Google Scholar]
- Rodriguez-Lopez J. N., Smith A. T., Thorneley R. N. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. J Biol Chem. 1996 Feb 23;271(8):4023–4030. doi: 10.1074/jbc.271.8.4023. [DOI] [PubMed] [Google Scholar]
- Rohlfs R. J., Mathews A. J., Carver T. E., Olson J. S., Springer B. A., Egeberg K. D., Sligar S. G. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J Biol Chem. 1990 Feb 25;265(6):3168–3176. [PubMed] [Google Scholar]
- Sinclair A. J., Barnett A. H., Lunec J. Free radicals and antioxidant systems in health and disease. Br J Hosp Med. 1990 May;43(5):334–344. [PubMed] [Google Scholar]
- Sitter A. J., Reczek C. M., Terner J. Observation of the FeIV=O stretching vibration of ferryl myoglobin by resonance Raman spectroscopy. Biochim Biophys Acta. 1985 Apr 29;828(3):229–235. doi: 10.1016/0167-4838(85)90301-2. [DOI] [PubMed] [Google Scholar]
- Smerdon S. J., Dodson G. G., Wilkinson A. J., Gibson Q. H., Blackmore R. S. Distal pocket polarity in ligand binding to myoglobin: structural and functional characterization of a threonine68(E11) mutant. Biochemistry. 1991 Jun 25;30(25):6252–6260. doi: 10.1021/bi00239a025. [DOI] [PubMed] [Google Scholar]
- Springer B. A., Egeberg K. D., Sligar S. G., Rohlfs R. J., Mathews A. J., Olson J. S. Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. J Biol Chem. 1989 Feb 25;264(6):3057–3060. [PubMed] [Google Scholar]
- Springer B. A., Sligar S. G. High-level expression of sperm whale myoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8961–8965. doi: 10.1073/pnas.84.24.8961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tew D., Ortiz de Montellano P. R. The myoglobin protein radical. Coupling of Tyr-103 to Tyr-151 in the H2O2-mediated cross-linking of sperm whale myoglobin. J Biol Chem. 1988 Nov 25;263(33):17880–17886. [PubMed] [Google Scholar]
- Vitello L. B., Erman J. E., Miller M. A., Wang J., Kraut J. Effect of arginine-48 replacement on the reaction between cytochrome c peroxidase and hydrogen peroxide. Biochemistry. 1993 Sep 21;32(37):9807–9818. doi: 10.1021/bi00088a036. [DOI] [PubMed] [Google Scholar]
- Watmough N. J., Cheesman M. R., Greenwood C., Thomson A. J. Cytochrome bo from Escherichia coli: reaction of the oxidized enzyme with hydrogen peroxide. Biochem J. 1994 Jun 1;300(Pt 2):469–475. doi: 10.1042/bj3000469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilks A., Ortiz de Montellano P. R. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J Biol Chem. 1993 Oct 25;268(30):22357–22362. [PubMed] [Google Scholar]
- Yonetani T., Schleyer H. Studies on cytochrome c peroxidase. IX. The reaction of ferrimyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrimyoglobin and cytochrome c peroxidase. J Biol Chem. 1967 Apr 25;242(8):1974–1979. [PubMed] [Google Scholar]
