Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):131–138. doi: 10.1042/bj3260131

Purification and staining of intact yeast DNA chromosomes and real-time observation of their migration during gel electrophoresis.

S Gurrieri 1, C Bustamante 1
PMCID: PMC1218646  PMID: 9337860

Abstract

In the past few years, fluorescence microscopy has been used successfully to characterize the motion of intermediate-size DNA molecules (50-500 kbp) during steady- and pulsed-field gel electrophoresis. However, experimental difficulties had prevented the application of this technique to the direct observation of longer DNA chromosomes (1-2 Mbp). In the present study a particular procedure was followed for the purification and staining of chromosomal yeast DNA to protect it from shear forces. Also, a new highly fluorescent DNA-labelling dye, YOYO-1, was employed to improve brightness and contrast. Finally, the motion of such long DNA molecules (1-2 Mbp) was characterized under steady-field electrophoresis conditions. An accurate description of the molecular mechanisms of motion of such long molecules should provide the basis for a detailed analysis of the mechanisms responsible for DNA trapping.

Full Text

The Full Text of this article is available as a PDF (825.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman B., Tuite E. Single- and double-strand photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res. 1996 Mar 15;24(6):1080–1090. doi: 10.1093/nar/24.6.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bancroft I., Wolk C. P. Pulsed homogeneous orthogonal field gel electrophoresis (PHOGE). Nucleic Acids Res. 1988 Aug 11;16(15):7405–7418. doi: 10.1093/nar/16.15.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bustamante C., Gurrieri S., Smith S. B. Towards a molecular description of pulsed-field gel electrophoresis. Trends Biotechnol. 1993 Jan;11(1):23–30. doi: 10.1016/0167-7799(93)90071-G. [DOI] [PubMed] [Google Scholar]
  4. Cantor C. R., Smith C. L., Mathew M. K. Pulsed-field gel electrophoresis of very large DNA molecules. Annu Rev Biophys Biophys Chem. 1988;17:287–304. doi: 10.1146/annurev.bb.17.060188.001443. [DOI] [PubMed] [Google Scholar]
  5. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  6. Carle G. F., Olson M. V. Orthogonal-field-alternation gel electrophoresis. Methods Enzymol. 1987;155:468–482. doi: 10.1016/0076-6879(87)55031-5. [DOI] [PubMed] [Google Scholar]
  7. Carle G. F., Olson M. V. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  9. Clark S. M., Lai E., Birren B. W., Hood L. A novel instrument for separating large DNA molecules with pulsed homogeneous electric fields. Science. 1988 Sep 2;241(4870):1203–1205. doi: 10.1126/science.3045968. [DOI] [PubMed] [Google Scholar]
  10. Duke TA, Viovy JL. Simulation of megabase DNA undergoing gel electrophoresis. Phys Rev Lett. 1992 Jan 27;68(4):542–545. doi: 10.1103/PhysRevLett.68.542. [DOI] [PubMed] [Google Scholar]
  11. FREIFELDER D., DAVISON P. F., GEIDUSCHEK E. P. Damage by visible light to the acridine orange--DNA complex. Biophys J. 1961 May;1:389–400. doi: 10.1016/s0006-3495(61)86897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardiner K., Laas W., Patterson D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat Cell Mol Genet. 1986 Mar;12(2):185–195. doi: 10.1007/BF01560665. [DOI] [PubMed] [Google Scholar]
  13. Gardiner K. Pulsed field gel electrophoresis. Anal Chem. 1991 Apr 1;63(7):658–665. doi: 10.1021/ac00007a003. [DOI] [PubMed] [Google Scholar]
  14. Glazer A. N., Rye H. S. Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature. 1992 Oct 29;359(6398):859–861. doi: 10.1038/359859a0. [DOI] [PubMed] [Google Scholar]
  15. Gunderson K., Chu G. Pulsed-field electrophoresis of megabase-sized DNA. Mol Cell Biol. 1991 Jun;11(6):3348–3354. doi: 10.1128/mcb.11.6.3348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gurrieri S., Rizzarelli E., Beach D., Bustamante C. Imaging of kinked configurations of DNA molecules undergoing orthogonal field alternating gel electrophoresis by fluorescence microscopy. Biochemistry. 1990 Apr 3;29(13):3396–3401. doi: 10.1021/bi00465a036. [DOI] [PubMed] [Google Scholar]
  17. Gurrieri S., Smith S. B., Wells K. S., Johnson I. D., Bustamante C. Real-time imaging of the reorientation mechanisms of YOYO-labelled DNA molecules during 90 degrees and 120 degrees pulsed field gel electrophoresis. Nucleic Acids Res. 1996 Dec 1;24(23):4759–4767. doi: 10.1093/nar/24.23.4759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gurrieri S., Wells K. S., Johnson I. D., Bustamante C. Direct visualization of individual DNA molecules by fluorescence microscopy: characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO. Anal Biochem. 1997 Jun 15;249(1):44–53. doi: 10.1006/abio.1997.2102. [DOI] [PubMed] [Google Scholar]
  19. Lai E., Birren B. W., Clark S. M., Simon M. I., Hood L. Pulsed field gel electrophoresis. Biotechniques. 1989 Jan;7(1):34–42. [PubMed] [Google Scholar]
  20. Orbach M. J., Vollrath D., Davis R. W., Yanofsky C. An electrophoretic karyotype of Neurospora crassa. Mol Cell Biol. 1988 Apr;8(4):1469–1473. doi: 10.1128/mcb.8.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rampino N. J. Information concerning the mechanism of electrophoretic DNA separation provided by quantitative video-epifluorescence microscopy. Biopolymers. 1991 Jul;31(8):1009–1016. doi: 10.1002/bip.360310810. [DOI] [PubMed] [Google Scholar]
  22. Rye H. S., Yue S., Quesada M. A., Haugland R. P., Mathies R. A., Glazer A. N. Picogram detection of stable dye-DNA intercalation complexes with two-color laser-excited confocal fluorescence gel scanner. Methods Enzymol. 1993;217:414–431. doi: 10.1016/0076-6879(93)17080-o. [DOI] [PubMed] [Google Scholar]
  23. Rye H. S., Yue S., Wemmer D. E., Quesada M. A., Haugland R. P., Mathies R. A., Glazer A. N. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res. 1992 Jun 11;20(11):2803–2812. doi: 10.1093/nar/20.11.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  25. Schwartz D. C., Koval M. Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature. 1989 Apr 6;338(6215):520–522. doi: 10.1038/338520a0. [DOI] [PubMed] [Google Scholar]
  26. Smith C. L., Cantor C. R. Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol. 1987;155:449–467. doi: 10.1016/0076-6879(87)55030-3. [DOI] [PubMed] [Google Scholar]
  27. Smith S. B., Aldridge P. K., Callis J. B. Observation of individual DNA molecules undergoing gel electrophoresis. Science. 1989 Jan 13;243(4888):203–206. doi: 10.1126/science.2911733. [DOI] [PubMed] [Google Scholar]
  28. Stellwagen J., Stellwagen N. C. Orientation of the agarose gel matrix in pulsed electric fields. Nucleic Acids Res. 1989 Feb 25;17(4):1537–1548. doi: 10.1093/nar/17.4.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turmel C., Brassard E., Slater G. W., Noolandi J. Molecular detrapping and band narrowing with high frequency modulation of pulsed field electrophoresis. Nucleic Acids Res. 1990 Feb 11;18(3):569–575. doi: 10.1093/nar/18.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Viovy J. L., Miomandre F., Miquel M. C., Caron F., Sor F. Irreversible trapping of DNA during crossed-field gel electrophoresis. Electrophoresis. 1992 Jan-Feb;13(1-2):1–6. doi: 10.1002/elps.1150130102. [DOI] [PubMed] [Google Scholar]
  31. Vollrath D., Davis R. W. Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Res. 1987 Oct 12;15(19):7865–7876. doi: 10.1093/nar/15.19.7865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zimm BH. Size flucuations can explain anomalous mobility in field-inversion electrophoresis of DNA. Phys Rev Lett. 1988 Dec 26;61(26):2965–2968. doi: 10.1103/PhysRevLett.61.2965. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES