Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):167–172. doi: 10.1042/bj3260167

Differential regulation of gamma-glutamylcysteine synthetase heavy and light subunit gene expression.

J Cai 1, Z Z Huang 1, S C Lu 1
PMCID: PMC1218650  PMID: 9337864

Abstract

gamma-Glutamylcysteine synthetase (GCS) is the rate-limiting enzyme in the biosynthesis of glutathione and is composed of a heavy and a light subunit. Although the heavy subunit is enzymically active alone, the light subunit plays an important regulatory role by making the holoenzyme function more efficiently. In the current study we examined whether conditions which are known to influence gene expression of the heavy subunit also influence that of the light subunit, and the mechanisms involved. Treatment of cultured rat hepatocytes with hormones such as insulin and hydrocortisone, or plating hepatocytes under low cell density increased the steady-state mRNA level of the heavy subunit only. Treatment with diethyl maleate (DEM), buthionine sulphoximine (BSO) and t-butylhydroquinone (TBH) increased the steady state mRNA level and gene transcription rates of both subunits. These treatments share in common their ability to induce oxidative stress and activate nuclear factor kappa B (NF-kappa B). Treatment with protease inhibitors 7-amino-1-chloro-3-tosylamido-2-heptanone (TLCK) or L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK) had no influence on the basal NF-kappa B and GCS subunit mRNA levels, but blocked the activation of NF-kappa B by DEM, BSO and TBH, and the increase in GCS heavy subunit mRNA level by BSO and TBH. On the other hand, the DEM-, BSO- and TBH-induced increase in GCS light-subunit mRNA level was unaffected by TLCK and TPCK. Thus only the heavy subunit is hormonally regulated and growth sensitive, whereas both subunits are regulated by oxidative stress. Signalling through NF-kappa B is involved only in the oxidative-stress-mediated changes in the heavy subunit gene expression.

Full Text

The Full Text of this article is available as a PDF (302.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baeuerle P. A., Baltimore D. A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Genes Dev. 1989 Nov;3(11):1689–1698. doi: 10.1101/gad.3.11.1689. [DOI] [PubMed] [Google Scholar]
  2. Borroz K. I., Buetler T. M., Eaton D. L. Modulation of gamma-glutamylcysteine synthetase large subunit mRNA expression by butylated hydroxyanisole. Toxicol Appl Pharmacol. 1994 May;126(1):150–155. doi: 10.1006/taap.1994.1101. [DOI] [PubMed] [Google Scholar]
  3. Cai J., Sun W. M., Lu S. C. Hormonal and cell density regulation of hepatic gamma-glutamylcysteine synthetase gene expression. Mol Pharmacol. 1995 Aug;48(2):212–218. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Eaton D. L., Hamel D. M. Increase in gamma-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione. Toxicol Appl Pharmacol. 1994 May;126(1):145–149. doi: 10.1006/taap.1994.1100. [DOI] [PubMed] [Google Scholar]
  6. FitzGerald M. J., Webber E. M., Donovan J. R., Fausto N. Rapid DNA binding by nuclear factor kappa B in hepatocytes at the start of liver regeneration. Cell Growth Differ. 1995 Apr;6(4):417–427. [PubMed] [Google Scholar]
  7. Gipp J. J., Bailey H. H., Mulcahy R. T. Cloning and sequencing of the cDNA for the light subunit of human liver gamma-glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun. 1995 Jan 17;206(2):584–589. doi: 10.1006/bbrc.1995.1083. [DOI] [PubMed] [Google Scholar]
  8. Godwin A. K., Meister A., O'Dwyer P. J., Huang C. S., Hamilton T. C., Anderson M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3070–3074. doi: 10.1073/pnas.89.7.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang C. S., Anderson M. E., Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 25;268(27):20578–20583. [PubMed] [Google Scholar]
  10. Huang C. S., Chang L. S., Anderson M. E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 15;268(26):19675–19680. [PubMed] [Google Scholar]
  11. Kaplowitz N., Aw T. Y., Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol. 1985;25:715–744. doi: 10.1146/annurev.pa.25.040185.003435. [DOI] [PubMed] [Google Scholar]
  12. Liu R. M., Hu H., Robison T. W., Forman H. J. Differential enhancement of gamma-glutamyl transpeptidase and gamma-glutamylcysteine synthetase by tert-butylhydroquinone in rat lung epithelial L2 cells. Am J Respir Cell Mol Biol. 1996 Feb;14(2):186–191. doi: 10.1165/ajrcmb.14.2.8630269. [DOI] [PubMed] [Google Scholar]
  13. Liu R. M., Vasiliou V., Zhu H., Duh J. L., Tabor M. W., Puga A., Nebert D. W., Sainsbury M., Shertzer H. G. Regulation of [Ah] gene battery enzymes and glutathione levels by 5,10-dihydroindeno[1,2-b]indole in mouse hepatoma cell lines. Carcinogenesis. 1994 Oct;15(10):2347–2352. doi: 10.1093/carcin/15.10.2347. [DOI] [PubMed] [Google Scholar]
  14. Lu S. C., Ge J. L., Kuhlenkamp J., Kaplowitz N. Insulin and glucocorticoid dependence of hepatic gamma-glutamylcysteine synthetase and glutathione synthesis in the rat. Studies in cultured hepatocytes and in vivo. J Clin Invest. 1992 Aug;90(2):524–532. doi: 10.1172/JCI115890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lu S. C., Ge J. L. Loss of suppression of GSH synthesis at low cell density in primary cultures of rat hepatocytes. Am J Physiol. 1992 Dec;263(6 Pt 1):C1181–C1189. doi: 10.1152/ajpcell.1992.263.6.C1181. [DOI] [PubMed] [Google Scholar]
  16. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  17. Mulcahy R. T., Bailey H. H., Gipp J. J. Up-regulation of gamma-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol. 1994;34(1):67–71. doi: 10.1007/BF00686114. [DOI] [PubMed] [Google Scholar]
  18. Mulcahy R. T., Gipp J. J. Identification of a putative antioxidant response element in the 5'-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun. 1995 Apr 6;209(1):227–233. doi: 10.1006/bbrc.1995.1493. [DOI] [PubMed] [Google Scholar]
  19. Mulcahy R. T., Untawale S., Gipp J. J. Transcriptional up-regulation of gamma-glutamylcysteine synthetase gene expression in melphalan-resistant human prostate carcinoma cells. Mol Pharmacol. 1994 Nov;46(5):909–914. [PubMed] [Google Scholar]
  20. Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
  21. Runnegar M. T., Kong S. M., Zhong Y. Z., Lu S. C. Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Pharmacol. 1995 Jan 18;49(2):219–225. doi: 10.1016/s0006-2952(94)00466-8. [DOI] [PubMed] [Google Scholar]
  22. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seelig G. F., Simondsen R. P., Meister A. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem. 1984 Aug 10;259(15):9345–9347. [PubMed] [Google Scholar]
  24. Shi M. M., Kugelman A., Iwamoto T., Tian L., Forman H. J. Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem. 1994 Oct 21;269(42):26512–26517. [PubMed] [Google Scholar]
  25. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  26. Urata Y., Yamamoto H., Goto S., Tsushima H., Akazawa S., Yamashita S., Nagataki S., Kondo T. Long exposure to high glucose concentration impairs the responsive expression of gamma-glutamylcysteine synthetase by interleukin-1beta and tumor necrosis factor-alpha in mouse endothelial cells. J Biol Chem. 1996 Jun 21;271(25):15146–15152. doi: 10.1074/jbc.271.25.15146. [DOI] [PubMed] [Google Scholar]
  27. Walsh A. C., Michaud S. G., Malossi J. A., Lawrence D. A. Glutathione depletion in human T lymphocytes: analysis of activation-associated gene expression and the stress response. Toxicol Appl Pharmacol. 1995 Aug;133(2):249–261. doi: 10.1006/taap.1995.1149. [DOI] [PubMed] [Google Scholar]
  28. Woods J. S., Davis H. A., Baer R. P. Enhancement of gamma-glutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Arch Biochem Biophys. 1992 Jul;296(1):350–353. doi: 10.1016/0003-9861(92)90583-i. [DOI] [PubMed] [Google Scholar]
  29. Yan N., Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1990 Jan 25;265(3):1588–1593. [PubMed] [Google Scholar]
  30. Yao K., Godwin A. K., Ozols R. F., Hamilton T. C., O'Dwyer P. J. Variable baseline gamma-glutamylcysteine synthetase messenger RNA expression in peripheral mononuclear cells of cancer patients, and its induction by buthionine sulfoximine treatment. Cancer Res. 1993 Aug 15;53(16):3662–3666. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES