Abstract
The bacterioferritin (BFR) of Escherichia coli consists of 24 identical subunits, each containing a dinuclear metal-binding site consisting of two histidines and four carboxylic acid residues. Earlier studies showed that the characterization of iron binding to BFR could be aided by EPR analysis of iron-nitrosyl species resulting from the addition of NO to the protein [Le Brun, Cheesman, Andrews, Harrison, Guest, Moore and Thomson (1993) FEBS Lett. 323, 261-266]. We now report data from gas chromatographic head space analysis combined with EPR spectroscopy to show that NO is not an inert probe: iron(II)-BFR catalyses the reduction of NO to N2O, resulting in oxidation of iron(II) at the dinuclear centre and the subsequent detection of mononuclear iron(III). In the presence of excess reductant (sodium ascorbate), iron(II)-BFR also catalyses the reduction of NO to N2O, giving rise to three mononuclear iron-nitrosyl species which are detectable by EPR. One of these, a dinitrosyl-iron complex of S = 1/2, present at a maximum of one per subunit, is shown by EPR studies of site-directed variants of BFR not to be located at the dinuclear centre. This is consistent with a proposal that the diferric form of the centre is unstable and breaks down to form mononuclear iron species.
Full Text
The Full Text of this article is available as a PDF (332.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews S. C., Harrison P. M., Guest J. R. Cloning, sequencing, and mapping of the bacterioferritin gene (bfr) of Escherichia coli K-12. J Bacteriol. 1989 Jul;171(7):3940–3947. doi: 10.1128/jb.171.7.3940-3947.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauminger E. R., Harrison P. M., Hechel D., Nowik I., Treffry A. Mössbauer spectroscopic investigation of structure-function relations in ferritins. Biochim Biophys Acta. 1991 Dec 11;1118(1):48–58. doi: 10.1016/0167-4838(91)90440-b. [DOI] [PubMed] [Google Scholar]
- Cheesman M. R., Thomson A. J., Greenwood C., Moore G. R., Kadir F. Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa. Nature. 1990 Aug 23;346(6286):771–773. doi: 10.1038/346771a0. [DOI] [PubMed] [Google Scholar]
- Cheesman M. R., le Brun N. E., Kadir F. H., Thomson A. J., Moore G. R., Andrews S. C., Guest J. R., Harrison P. M., Smith J. M., Yewdall S. J. Haem and non-haem iron sites in Escherichia coli bacterioferritin: spectroscopic and model building studies. Biochem J. 1993 May 15;292(Pt 1):47–56. doi: 10.1042/bj2920047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DRYSDALE J. W., MUNRO H. N. SMALL-SCALE ISOLATION OF FERRITIN FOR THE ASSAY OF THE INCORPORATION OF 14C-LABELLED AMINO ACIDS. Biochem J. 1965 Jun;95:851–858. doi: 10.1042/bj0950851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drapier J. C., Pellat C., Henry Y. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. J Biol Chem. 1991 Jun 5;266(16):10162–10167. [PubMed] [Google Scholar]
- Feig Andrew L., Bautista Maria T., Lippard Stephen J. A Carboxylate-Bridged Non-Heme Diiron Dinitrosyl Complex. Inorg Chem. 1996 Nov 6;35(23):6892–6898. doi: 10.1021/ic960552b. [DOI] [PubMed] [Google Scholar]
- Frolow F., Kalb A. J., Yariv J. Structure of a unique twofold symmetric haem-binding site. Nat Struct Biol. 1994 Jul;1(7):453–460. doi: 10.1038/nsb0794-453. [DOI] [PubMed] [Google Scholar]
- Harrison P. M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
- Haskin C. J., Ravi N., Lynch J. B., Münck E., Que L., Jr Reaction of NO with the reduced R2 protein of ribonucleotide reductase from Escherichia coli. Biochemistry. 1995 Sep 5;34(35):11090–11098. doi: 10.1021/bi00035a014. [DOI] [PubMed] [Google Scholar]
- Hempstead P. D., Hudson A. J., Artymiuk P. J., Andrews S. C., Banfield M. J., Guest J. R., Harrison P. M. Direct observation of the iron binding sites in a ferritin. FEBS Lett. 1994 Aug 22;350(2-3):258–262. doi: 10.1016/0014-5793(94)00781-0. [DOI] [PubMed] [Google Scholar]
- Kanyo Z. F., Scolnick L. R., Ash D. E., Christianson D. W. Structure of a unique binuclear manganese cluster in arginase. Nature. 1996 Oct 10;383(6600):554–557. doi: 10.1038/383554a0. [DOI] [PubMed] [Google Scholar]
- Keech A. M., Le Brun N. E., Wilson M. T., Andrews S. C., Moore G. R., Thomson A. J. Spectroscopic studies of cobalt(II) binding to Escherichia coli bacterioferritin. J Biol Chem. 1997 Jan 3;272(1):422–429. doi: 10.1074/jbc.272.1.422. [DOI] [PubMed] [Google Scholar]
- Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
- Le Brun N. E., Andrews S. C., Guest J. R., Harrison P. M., Moore G. R., Thomson A. J. Identification of the ferroxidase centre of Escherichia coli bacterioferritin. Biochem J. 1995 Dec 1;312(Pt 2):385–392. [PMC free article] [PubMed] [Google Scholar]
- Le Brun N. E., Cheesman M. R., Thomson A. J., Moore G. R., Andrews S. C., Guest J. R., Harrison P. M. An EPR investigation of non-haem iron sites in Escherichia coli bacterioferritin and their interaction with phosphate. A study using nitric oxide as a spin probe. FEBS Lett. 1993 Jun 1;323(3):261–266. doi: 10.1016/0014-5793(93)81353-2. [DOI] [PubMed] [Google Scholar]
- Le Brun N. E., Keech A. M., Mauk M. R., Mauk A. G., Andrews S. C., Thomson A. J., Moore G. R. Charge compensated binding of divalent metals to bacterioferritin: H+ release associated with cobalt(II) and zinc(II) binding at dinuclear metal sites. FEBS Lett. 1996 Nov 18;397(2-3):159–163. doi: 10.1016/s0014-5793(96)01172-6. [DOI] [PubMed] [Google Scholar]
- Le Brun N. E., Wilson M. T., Andrews S. C., Guest J. R., Harrison P. M., Thomson A. J., Moore G. R. Kinetic and structural characterization of an intermediate in the biomineralization of bacterioferritin. FEBS Lett. 1993 Oct 25;333(1-2):197–202. doi: 10.1016/0014-5793(93)80404-i. [DOI] [PubMed] [Google Scholar]
- Lee M., Arosio P., Cozzi A., Chasteen N. D. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry. 1994 Mar 29;33(12):3679–3687. doi: 10.1021/bi00178a026. [DOI] [PubMed] [Google Scholar]
- Maragos C. M., Morley D., Wink D. A., Dunams T. M., Saavedra J. E., Hoffman A., Bove A. A., Isaac L., Hrabie J. A., Keefer L. K. Complexes of .NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem. 1991 Nov;34(11):3242–3247. doi: 10.1021/jm00115a013. [DOI] [PubMed] [Google Scholar]
- Mülsch A., Mordvintcev P. I., Vanin A. F., Busse R. Formation and release of dinitrosyl iron complexes by endothelial cells. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1303–1308. doi: 10.1006/bbrc.1993.2394. [DOI] [PubMed] [Google Scholar]
- Nordlund P., Eklund H. Di-iron-carboxylate proteins. Curr Opin Struct Biol. 1995 Dec;5(6):758–766. doi: 10.1016/0959-440x(95)80008-5. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Woolum J. C., Tiezzi E., Commoner B. Electron spin resonane of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta. 1968 Aug 13;160(3):311–320. doi: 10.1016/0005-2795(68)90204-3. [DOI] [PubMed] [Google Scholar]
- Yariv J., Kalb A. J., Sperling R., Bauminger E. R., Cohen S. G., Ofer S. The composition and the structure of bacterioferritin of Escherichia coli. Biochem J. 1981 Jul 1;197(1):171–175. doi: 10.1042/bj1970171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zumft W. G., Frunzke K. Discrimination of ascorbate-dependent nonenzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. Biochim Biophys Acta. 1982 Sep 15;681(3):459–468. doi: 10.1016/0005-2728(82)90188-8. [DOI] [PubMed] [Google Scholar]