Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):205–213. doi: 10.1042/bj3260205

Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterol-binding protein is dependent on the pleckstrin homology domain.

T A Lagace 1, D M Byers 1, H W Cook 1, N D Ridgway 1
PMCID: PMC1218656  PMID: 9337870

Abstract

Oxysterol-binding protein (OSBP) is a high-affinity receptor for a variety of oxysterols, such as 25-hydroxycholesterol, that down-regulate cholesterol synthesis and stimulate cholesterol esterification. To examine a potential role for OSBP in regulating cholesterol metabolism, we stably overexpressed this protein in Chinese-hamster ovary (CHO)-K1 cells. Compared with mock-transfected controls, several cell lines overexpressing wild-type OSBP (CHO-OSBP) displayed a 50% decrease in cholesteryl ester synthesis when cultured in medium with delipidated serum, 25-hydroxycholesterol or low-density lipoprotein (LDL). CHO-OSBP cells showed a 40-60% decrease in acyl-CoA:cholesterol acyltransferase activity and mRNA, a 50% elevation in mRNA for three sterol-regulated genes [LDL receptor, 3-hydroxy-3-methylgluraryl (HMG)-CoA reductase and HMG-CoA synthase], and an 80% increase in [14C]acetate incorporation into cholesterol. CHO-K1 cells overexpressing two OSBP mutants with a complete or N-terminal deletion of the pleckstrin homology (PH) domain had cholesterol esterification and synthesis rates that were similar to those shown by mock-transfected controls. Unlike wild-type OSBP, both PH domain mutants displayed diffuse cytoplasmic immunofluorescence staining and did not translocate to the Golgi apparatus in the presence of 25-hydroxycholesterol. CHO-K1 cells overexpressing OSBP have pronounced alterations in cholesterol esterification and synthesis, indicating a potential role for this receptor in cholesterol homoeostasis. The phenotype observed in cells overexpressing OSBP is dependent on the PH domain, which appears to be necessary for ligand-dependent localization of OSBP to the Golgi apparatus.

Full Text

The Full Text of this article is available as a PDF (547.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. S., Dana S. E., Goldstein J. L. Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J Biol Chem. 1975 May 25;250(10):4025–4027. [PubMed] [Google Scholar]
  2. Brown M. S., Faust J. R., Goldstein J. L., Kaneko I., Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978 Feb 25;253(4):1121–1128. [PubMed] [Google Scholar]
  3. Cao G., Goldstein J. L., Brown M. S. Complementation of mutation in acyl-CoA:cholesterol acyltransferase (ACAT) fails to restore sterol regulation in ACAT-defective sterol-resistant hamster cells. J Biol Chem. 1996 Jun 14;271(24):14642–14648. doi: 10.1074/jbc.271.24.14642. [DOI] [PubMed] [Google Scholar]
  4. Cheng D., Chang C. C., Qu X., Chang T. Y. Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem. 1995 Jan 13;270(2):685–695. doi: 10.1074/jbc.270.2.685. [DOI] [PubMed] [Google Scholar]
  5. Dawson P. A., Ridgway N. D., Slaughter C. A., Brown M. S., Goldstein J. L. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J Biol Chem. 1989 Oct 5;264(28):16798–16803. [PubMed] [Google Scholar]
  6. Dawson P. A., Van der Westhuyzen D. R., Goldstein J. L., Brown M. S. Purification of oxysterol binding protein from hamster liver cytosol. J Biol Chem. 1989 May 25;264(15):9046–9052. [PubMed] [Google Scholar]
  7. Essen L. O., Perisic O., Cheung R., Katan M., Williams R. L. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature. 1996 Apr 18;380(6575):595–602. doi: 10.1038/380595a0. [DOI] [PubMed] [Google Scholar]
  8. Esser V., Limbird L. E., Brown M. S., Goldstein J. L., Russell D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem. 1988 Sep 15;263(26):13282–13290. [PubMed] [Google Scholar]
  9. Fang M., Kearns B. G., Gedvilaite A., Kagiwada S., Kearns M., Fung M. K., Bankaitis V. A. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 1996 Dec 2;15(23):6447–6459. [PMC free article] [PubMed] [Google Scholar]
  10. Ferguson K. M., Lemmon M. A., Schlessinger J., Sigler P. B. Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell. 1994 Oct 21;79(2):199–209. doi: 10.1016/0092-8674(94)90190-2. [DOI] [PubMed] [Google Scholar]
  11. Ferguson K. M., Lemmon M. A., Schlessinger J., Sigler P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 1995 Dec 15;83(6):1037–1046. doi: 10.1016/0092-8674(95)90219-8. [DOI] [PubMed] [Google Scholar]
  12. Gibson T. J., Hyvönen M., Musacchio A., Saraste M., Birney E. PH domain: the first anniversary. Trends Biochem Sci. 1994 Sep;19(9):349–353. doi: 10.1016/0968-0004(94)90108-2. [DOI] [PubMed] [Google Scholar]
  13. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  15. Harlan J. E., Hajduk P. J., Yoon H. S., Fesik S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature. 1994 Sep 8;371(6493):168–170. doi: 10.1038/371168a0. [DOI] [PubMed] [Google Scholar]
  16. Haslam R. J., Koide H. B., Hemmings B. A. Pleckstrin domain homology. Nature. 1993 May 27;363(6427):309–310. doi: 10.1038/363309b0. [DOI] [PubMed] [Google Scholar]
  17. Hwang P. L. Biological activities of oxygenated sterols: physiological and pathological implications. Bioessays. 1991 Nov;13(11):583–589. doi: 10.1002/bies.950131108. [DOI] [PubMed] [Google Scholar]
  18. Hyvönen M., Macias M. J., Nilges M., Oschkinat H., Saraste M., Wilmanns M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 1995 Oct 2;14(19):4676–4685. doi: 10.1002/j.1460-2075.1995.tb00149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Inglese J., Koch W. J., Touhara K., Lefkowitz R. J. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci. 1995 Apr;20(4):151–156. doi: 10.1016/s0968-0004(00)88992-6. [DOI] [PubMed] [Google Scholar]
  20. Jiang B., Brown J. L., Sheraton J., Fortin N., Bussey H. A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast. 1994 Mar;10(3):341–353. doi: 10.1002/yea.320100307. [DOI] [PubMed] [Google Scholar]
  21. Kandutsch A. A., Chen H. W., Heiniger H. J. Biological activity of some oxygenated sterols. Science. 1978 Aug 11;201(4355):498–501. doi: 10.1126/science.663671. [DOI] [PubMed] [Google Scholar]
  22. Kandutsch A. A., Shown E. P. Assay of oxysterol-binding protein in a mouse fibroblast, cell-free system. Dissociation constant and other properties of the system. J Biol Chem. 1981 Dec 25;256(24):13068–13073. [PubMed] [Google Scholar]
  23. Konishi H., Kuroda S., Kikkawa U. The pleckstrin homology domain of RAC protein kinase associates with the regulatory domain of protein kinase C zeta. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1770–1775. doi: 10.1006/bbrc.1994.2874. [DOI] [PubMed] [Google Scholar]
  24. Lemmon M. A., Ferguson K. M., O'Brien R., Sigler P. B., Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10472–10476. doi: 10.1073/pnas.92.23.10472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lemmon M. A., Ferguson K. M., Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 1996 May 31;85(5):621–624. doi: 10.1016/s0092-8674(00)81022-3. [DOI] [PubMed] [Google Scholar]
  26. Levanon D., Hsieh C. L., Francke U., Dawson P. A., Ridgway N. D., Brown M. S., Goldstein J. L. cDNA cloning of human oxysterol-binding protein and localization of the gene to human chromosome 11 and mouse chromosome 19. Genomics. 1990 May;7(1):65–74. doi: 10.1016/0888-7543(90)90519-z. [DOI] [PubMed] [Google Scholar]
  27. Metherall J. E., Ridgway N. D., Dawson P. A., Goldstein J. L., Brown M. S. A 25-hydroxycholesterol-resistant cell line deficient in acyl-CoA: cholesterol acyltransferase. J Biol Chem. 1991 Jul 5;266(19):12734–12740. [PubMed] [Google Scholar]
  28. Paterson H. F., Savopoulos J. W., Perisic O., Cheung R., Ellis M. V., Williams R. L., Katan M. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem J. 1995 Dec 15;312(Pt 3):661–666. doi: 10.1042/bj3120661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ridgway N. D., Dawson P. A., Ho Y. K., Brown M. S., Goldstein J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol. 1992 Jan;116(2):307–319. doi: 10.1083/jcb.116.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ridgway N. D., Lagace T. A. Brefeldin A renders Chinese hamster ovary cells insensitive to transcriptional suppression by 25-hydroxycholesterol. J Biol Chem. 1995 Apr 7;270(14):8023–8031. doi: 10.1074/jbc.270.14.8023. [DOI] [PubMed] [Google Scholar]
  31. Smith L. L. Review of progress in sterol oxidations: 1987-1995. Lipids. 1996 May;31(5):453–487. doi: 10.1007/BF02522641. [DOI] [PubMed] [Google Scholar]
  32. Taylor F. R., Kandutsch A. A. Use of oxygenated sterols to probe the regulation of 3-hydroxy-3-methylglutaryl-CoA reductase and sterologenesis. Methods Enzymol. 1985;110:9–19. doi: 10.1016/s0076-6879(85)10055-8. [DOI] [PubMed] [Google Scholar]
  33. Taylor F. R., Saucier S. E., Shown E. P., Parish E. J., Kandutsch A. A. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J Biol Chem. 1984 Oct 25;259(20):12382–12387. [PubMed] [Google Scholar]
  34. Touhara K., Inglese J., Pitcher J. A., Shaw G., Lefkowitz R. J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem. 1994 Apr 8;269(14):10217–10220. [PubMed] [Google Scholar]
  35. Touhara K., Koch W. J., Hawes B. E., Lefkowitz R. J. Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase. Differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem. 1995 Jul 14;270(28):17000–17005. doi: 10.1074/jbc.270.28.17000. [DOI] [PubMed] [Google Scholar]
  36. Uelmen P. J., Oka K., Sullivan M., Chang C. C., Chang T. Y., Chan L. Tissue-specific expression and cholesterol regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. J Biol Chem. 1995 Nov 3;270(44):26192–26201. doi: 10.1074/jbc.270.44.26192. [DOI] [PubMed] [Google Scholar]
  37. Wang D. S., Shaw R., Hattori M., Arai H., Inoue K., Shaw G. Binding of pleckstrin homology domains to WD40/beta-transducin repeat containing segments of the protein product of the Lis-1 gene. Biochem Biophys Res Commun. 1995 Apr 17;209(2):622–629. doi: 10.1006/bbrc.1995.1545. [DOI] [PubMed] [Google Scholar]
  38. Yao L., Kawakami Y., Kawakami T. The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9175–9179. doi: 10.1073/pnas.91.19.9175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yoon H. S., Hajduk P. J., Petros A. M., Olejniczak E. T., Meadows R. P., Fesik S. W. Solution structure of a pleckstrin-homology domain. Nature. 1994 Jun 23;369(6482):672–675. doi: 10.1038/369672a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES