Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):297–298. doi: 10.1042/bj3260297

Membrane permeability of coelenterazine analogues measured with fish eggs.

O Shimomura 1
PMCID: PMC1218668  PMID: 9291095

Abstract

To determine the suitability of various coelenterazine analogues for the regeneration of aequorin in living cells, the membrane permeabilities of 11 analogues were measured using the eggs of the killifish Fundulus grandis by soaking the eggs in solutions containing the analogues. The results indicated that e-coelenterazine, which has an exceptionally high rate of in vitro regeneration of aequorin, not only permeated poorly into the eggs but also was highly unstable. All other analogues tested permeated sufficiently into the eggs. The highest permeability was found with f-coelenterazine; the concentration of f-coelenterazine in the eggs was about five times that in the surrounding medium, assuming that the distribution of the compound in the egg is uniform.

Full Text

The Full Text of this article is available as a PDF (174.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Inouye S., Noguchi M., Sakaki Y., Takagi Y., Miyata T., Iwanaga S., Miyata T., Tsuji F. I. Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci U S A. 1985 May;82(10):3154–3158. doi: 10.1073/pnas.82.10.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  3. Prasher D., McCann R. O., Cormier M. J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1259–1268. doi: 10.1016/0006-291x(85)90321-3. [DOI] [PubMed] [Google Scholar]
  4. Rizzuto R., Simpson A. W., Brini M., Pozzan T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992 Jul 23;358(6384):325–327. doi: 10.1038/358325a0. [DOI] [PubMed] [Google Scholar]
  5. Shimomura O., Johnson F. H. Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2611–2615. doi: 10.1073/pnas.75.6.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Shimomura O., Johnson F. H. Regeneration of the photoprotein aequorin. Nature. 1975 Jul 17;256(5514):236–238. doi: 10.1038/256236a0. [DOI] [PubMed] [Google Scholar]
  7. Shimomura O., Kishi Y., Inouye S. The relative rate of aequorin regeneration from apoaequorin and coelenterazine analogues. Biochem J. 1993 Dec 15;296(Pt 3):549–551. doi: 10.1042/bj2960549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shimomura O., Masugi T., Johnson F. H., Haneda Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry. 1978 Mar 21;17(6):994–998. doi: 10.1021/bi00599a008. [DOI] [PubMed] [Google Scholar]
  9. Shimomura O., Musicki B., Kishi Y., Inouye S. Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium. 1993 May;14(5):373–378. doi: 10.1016/0143-4160(93)90041-4. [DOI] [PubMed] [Google Scholar]
  10. Shimomura O., Musicki B., Kishi Y. Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J. 1989 Aug 1;261(3):913–920. doi: 10.1042/bj2610913. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES