Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):305–310. doi: 10.1042/bj3260305

From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase.

H M Jespersen 1, I V Kjaersgård 1, L Ostergaard 1, K G Welinder 1
PMCID: PMC1218670  PMID: 9291097

Abstract

Ascorbate peroxidases are haem proteins that efficiently scavenge H2O2 in the cytosol and chloroplasts of plants. Database analyses retrieved 52 expressed sequence tags coding for Arabidopsis thaliana ascorbate peroxidases. Complete sequencing of non-redundant clones revealed three novel types in addition to the two cytosol types described previously in Arabidopsis. Analysis of sequence data available for all plant ascorbate peroxidases resulted in the following classification: two types of cytosol soluble ascorbate peroxidase designated cs1 and cs2; three types of cytosol membrane-bound ascorbate peroxidase, namely cm1, bound to microbodies via a C-terminal membrane-spanning segment, and cm2 and cm3, both of unknown location; two types of chloroplast ascorbate peroxidase with N-terminal transit sequences, the stromal ascorbate peroxidase (chs), and the thylakoid-bound ascorbate peroxidase showing a C-terminal transmembrane segment and designated cht. Further comparison of the patterns of conserved residues and the crystal structure of pea ascorbate peroxidase showed that active site residues are conserved, and three peptide segments implicated in interaction with reducing substrate are similar, excepting cm2 and cm3 types. A change of Phe-175 in cytosol types to Trp-175 in chloroplast types might explain the greater ascorbate specificity of chloroplast compared with cytosol ascorbate peroxidases. Residues involved in homodimeric subunit interaction are conserved only in cs1, cs2 and cm1 types. The proximal cation (K+)-binding site observed in pea ascorbate peroxidase seems to be conserved. In addition, cm1, cm2, cm3, chs and cht ascorbate peroxidases contain Asp-43, Asn-57 and Ser-59, indicative of a distal monovalent cation site. The data support the hypothesis that present-day peroxidases evolved by an early gene duplication event.

Full Text

The Full Text of this article is available as a PDF (457.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  3. Boguski M. S. The turning point in genome research. Trends Biochem Sci. 1995 Aug;20(8):295–296. doi: 10.1016/s0968-0004(00)89051-9. [DOI] [PubMed] [Google Scholar]
  4. Bunkelmann J. R., Trelease R. N. Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol. 1996 Feb;110(2):589–598. doi: 10.1104/pp.110.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chatfield M., Dalton D. A. Ascorbate peroxidase from soybean root nodules. Plant Physiol. 1993 Oct;103(2):661–662. doi: 10.1104/pp.103.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  7. Claros M. G., von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994 Dec;10(6):685–686. doi: 10.1093/bioinformatics/10.6.685. [DOI] [PubMed] [Google Scholar]
  8. Cooke R., Raynal M., Laudié M., Grellet F., Delseny M., Morris P. C., Guerrier D., Giraudat J., Quigley F., Clabault G. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J. 1996 Jan;9(1):101–124. doi: 10.1046/j.1365-313x.1996.09010101.x. [DOI] [PubMed] [Google Scholar]
  9. Douwe de Boer A., Weisbeek P. J. Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta. 1991 Nov 13;1071(3):221–253. doi: 10.1016/0304-4157(91)90015-o. [DOI] [PubMed] [Google Scholar]
  10. Durner J., Klessig D. F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11312–11316. doi: 10.1073/pnas.92.24.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  12. Hirel P. H., Schmitter M. J., Dessen P., Fayat G., Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247–8251. doi: 10.1073/pnas.86.21.8247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishikawa T., Sakai K., Takeda T., Shigeoka S. Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett. 1995 Jun 19;367(1):28–32. doi: 10.1016/0014-5793(95)00539-l. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa T., Sakai K., Yoshimura K., Takeda T., Shigeoka S. cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3'-coding regions. FEBS Lett. 1996 Apr 22;384(3):289–293. doi: 10.1016/0014-5793(96)00332-8. [DOI] [PubMed] [Google Scholar]
  15. Kubo A., Saji H., Tanaka K., Kondo N. Genomic DNA structure of a gene encoding cytosolic ascorbate peroxidase from Arabidopsis thaliana. FEBS Lett. 1993 Jan 11;315(3):313–317. doi: 10.1016/0014-5793(93)81185-3. [DOI] [PubMed] [Google Scholar]
  16. Kubo A., Saji H., Tanaka K., Tanaka K., Kondo N. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol Biol. 1992 Feb;18(4):691–701. doi: 10.1007/BF00020011. [DOI] [PubMed] [Google Scholar]
  17. Lopez F., Vansuyt G., Derancourt J., Fourcroy P., Casse-Delbart F. Identification by 2D-page analysis of salt-stress induced proteins in radish (Raphanus sativus). Cell Mol Biol (Noisy-le-grand) 1994 Feb;40(1):85–90. [PubMed] [Google Scholar]
  18. Mittler R., Zilinskas B. A. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem. 1992 Oct 25;267(30):21802–21807. [PubMed] [Google Scholar]
  19. Mittler R., Zilinskas B. A. Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett. 1991 Sep 9;289(2):257–259. doi: 10.1016/0014-5793(91)81083-k. [DOI] [PubMed] [Google Scholar]
  20. Mittler R., Zilinskas B. A. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 1991 Nov;97(3):962–968. doi: 10.1104/pp.97.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orvar B. L., Ellis B. E. Isolation of a cDNA encoding cytosolic ascorbate peroxidase in tobacco. Plant Physiol. 1995 Jun;108(2):839–840. doi: 10.1104/pp.108.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Patterson W. R., Poulos T. L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry. 1995 Apr 4;34(13):4331–4341. doi: 10.1021/bi00013a023. [DOI] [PubMed] [Google Scholar]
  24. Poulos T. L., Patterson W. R., Sundaramoorthy M. The crystal structure of ascorbate and manganese peroxidases: the role of non-haem metal in the catalytic mechanism. Biochem Soc Trans. 1995 May;23(2):228–232. doi: 10.1042/bst0230228. [DOI] [PubMed] [Google Scholar]
  25. Regad F., Bardet C., Tremousaygue D., Moisan A., Lescure B., Axelos M. cDNA cloning and expression of an Arabidopsis GTP-binding protein of the ARF family. FEBS Lett. 1993 Jan 25;316(2):133–136. doi: 10.1016/0014-5793(93)81201-a. [DOI] [PubMed] [Google Scholar]
  26. Santos M., Gousseau H., Lister C., Foyer C., Creissen G., Mullineaux P. Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta. 1996;198(1):64–69. doi: 10.1007/BF00197587. [DOI] [PubMed] [Google Scholar]
  27. Sasaki T., Song J., Koga-Ban Y., Matsui E., Fang F., Higo H., Nagasaki H., Hori M., Miya M., Murayama-Kayano E. Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J. 1994 Oct;6(4):615–624. doi: 10.1046/j.1365-313x.1994.6040615.x. [DOI] [PubMed] [Google Scholar]
  28. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  29. Schantz M. L., Schreiber H., Guillemaut P., Schantz R. Changes in ascorbate peroxidase activities during fruit ripening in Capsicum annum. FEBS Lett. 1995 Jan 23;358(2):149–152. doi: 10.1016/0014-5793(94)01413-u. [DOI] [PubMed] [Google Scholar]
  30. Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Breusegem F., Villarroel R., Van Montagu M., Inzé D. Ascorbate peroxidase cDNA from maize. Plant Physiol. 1995 Feb;107(2):649–650. doi: 10.1104/pp.107.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Webb R. P., Allen R. D. Isolation and characterization of a cDNA for spinach cytosolic ascorbate peroxidase. Plant Physiol. 1995 Jul;108(3):1325–1325. doi: 10.1104/pp.108.3.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamaguchi K., Hayashi M., Nishimura M. cDNA cloning of thylakoid-bound ascorbate peroxidase in pumpkin and its characterization. Plant Cell Physiol. 1996 Apr;37(3):405–409. doi: 10.1093/oxfordjournals.pcp.a028961. [DOI] [PubMed] [Google Scholar]
  35. Yamaguchi K., Mori H., Nishimura M. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 1995 Sep;36(6):1157–1162. doi: 10.1093/oxfordjournals.pcp.a078862. [DOI] [PubMed] [Google Scholar]
  36. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES