Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):321–327. doi: 10.1042/bj3260321

The human complement regulatory factor-H-like protein 1, which represents a truncated form of factor H, displays cell-attachment activity.

J Hellwage 1, S Kühn 1, P F Zipfel 1
PMCID: PMC1218672  PMID: 9291099

Abstract

Complement factor H (FH) and factor-H-like protein 1 (FHL-1) are human plasma proteins with regulatory functions in the alternative pathway of complement activation. FH and FHL-1 are organized in repetitive elements termed short consensus repeats (SCRs) and the seven SCRs of FHL-1 are identical with the N-terminal domain of the 20 SCRs of FH. The fourth SCR of both proteins (SCR 4) includes the sequence Arg-Gly-Asp (RGD), a motif that is responsible for the major adhesive activity of matrix proteins like fibronectin. A synthetic hexapeptide with the sequence ERGDAV derived from the RGD domain of FH/FHL-1 interferes with cell attachment to a fibronectin matrix. Although the identical motif is present in both FH and FHL-1, only FHL-1 acts as a matrix for cell spreading and attachment, thus the two proteins differ in function. The adhesive activity of FHL-1 is localized to the RGD-containing SCR 4 by the use of recombinant fragments. All three analysed anchorage-dependent cell lines (CCl64, C32 and MRC-5) adhere to an FHL-1 matrix. The use of synthetic peptides in competition assays, on either FHL-1-derived or fibronectin matrices, shows that the cellular receptors binding to the FH/FHL-1-derived RGD motif are related to or identical with integrin receptors which interact with fibronectin. The identification of a functional adhesive domain in the FH/FHL-1 sequence demonstrates, at least for FHL-1, a role in cell attachment and adhesion.

Full Text

The Full Text of this article is available as a PDF (364.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alsenz J., Lambris J. D., Schulz T. F., Dierich M. P. Localization of the complement-component-C3b-binding site and the cofactor activity for factor I in the 38kDa tryptic fragment of factor H. Biochem J. 1984 Dec 1;224(2):389–398. doi: 10.1042/bj2240389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aota S., Nagai T., Yamada K. M. Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J Biol Chem. 1991 Aug 25;266(24):15938–15943. [PubMed] [Google Scholar]
  3. Avery V. M., Gordon D. L. Characterization of factor H binding to human polymorphonuclear leukocytes. J Immunol. 1993 Nov 15;151(10):5545–5553. [PubMed] [Google Scholar]
  4. Barlow P. N., Norman D. G., Steinkasserer A., Horne T. J., Pearce J., Driscoll P. C., Sim R. B., Campbell I. D. Solution structure of the fifth repeat of factor H: a second example of the complement control protein module. Biochemistry. 1992 Apr 14;31(14):3626–3634. doi: 10.1021/bi00129a011. [DOI] [PubMed] [Google Scholar]
  5. Barlow P. N., Steinkasserer A., Norman D. G., Kieffer B., Wiles A. P., Sim R. B., Campbell I. D. Solution structure of a pair of complement modules by nuclear magnetic resonance. J Mol Biol. 1993 Jul 5;232(1):268–284. doi: 10.1006/jmbi.1993.1381. [DOI] [PubMed] [Google Scholar]
  6. Becherer J. D., Alsenz J., Servis C., Myones B. L., Lambris J. D. Cell surface proteins reacting with activated complement components. Complement Inflamm. 1989;6(3):142–165. doi: 10.1159/000463091. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Dahmen A., Kaidoh T., Zipfel P. F., Gigli I. Cloning and characterization of a cDNA representing a putative complement-regulatory plasma protein from barred sand bass (Parablax neblifer). Biochem J. 1994 Jul 15;301(Pt 2):391–397. doi: 10.1042/bj3010391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiScipio R. G. Ultrastructures and interactions of complement factors H and I. J Immunol. 1992 Oct 15;149(8):2592–2599. [PubMed] [Google Scholar]
  10. Gordon D. L., Kaufman R. M., Blackmore T. K., Kwong J., Lublin D. M. Identification of complement regulatory domains in human factor H. J Immunol. 1995 Jul 1;155(1):348–356. [PubMed] [Google Scholar]
  11. Hayman E. G., Pierschbacher M. D., Ruoslahti E. Detachment of cells from culture substrate by soluble fibronectin peptides. J Cell Biol. 1985 Jun;100(6):1948–1954. doi: 10.1083/jcb.100.6.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hochuli E., Döbeli H., Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr. 1987 Dec 18;411:177–184. doi: 10.1016/s0021-9673(00)93969-4. [DOI] [PubMed] [Google Scholar]
  13. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  14. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  15. Iferroudjene D., Schouft M. T., Lemercier C., Gilbert D., Fontaine M. Evidence for an active hydrophobic form of factor H that is able to induce secretion of interleukin 1-beta or by human monocytes. Eur J Immunol. 1991 Apr;21(4):967–972. doi: 10.1002/eji.1830210416. [DOI] [PubMed] [Google Scholar]
  16. Kristensen T., Tack B. F. Murine protein H is comprised of 20 repeating units, 61 amino acids in length. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3963–3967. doi: 10.1073/pnas.83.11.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  18. Kühn S., Skerka C., Zipfel P. F. Mapping of the complement regulatory domains in the human factor H-like protein 1 and in factor H1. J Immunol. 1995 Dec 15;155(12):5663–5670. [PubMed] [Google Scholar]
  19. Kühn S., Zipfel P. F. Mapping of the domains required for decay acceleration activity of the human factor H-like protein 1 and factor H. Eur J Immunol. 1996 Oct;26(10):2383–2387. doi: 10.1002/eji.1830261017. [DOI] [PubMed] [Google Scholar]
  20. Kühn S., Zipfel P. F. The baculovirus expression vector pBSV-8His directs secretion of histidine-tagged proteins. Gene. 1995 Sep 11;162(2):225–229. doi: 10.1016/0378-1119(95)00360-i. [DOI] [PubMed] [Google Scholar]
  21. Lambris J. D., Ross G. D. Characterization of the lymphocyte membrane receptor for factor H (beta 1H-globulin) with an antibody to anti-factor H idiotype. J Exp Med. 1982 May 1;155(5):1400–1411. doi: 10.1084/jem.155.5.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Loftus J. C., Smith J. W., Ginsberg M. H. Integrin-mediated cell adhesion: the extracellular face. J Biol Chem. 1994 Oct 14;269(41):25235–25238. [PubMed] [Google Scholar]
  23. Meri S., Pangburn M. K. Regulation of alternative pathway complement activation by glycosaminoglycans: specificity of the polyanion binding site on factor H. Biochem Biophys Res Commun. 1994 Jan 14;198(1):52–59. doi: 10.1006/bbrc.1994.1008. [DOI] [PubMed] [Google Scholar]
  24. Misasi R., Huemer H. P., Schwaeble W., Sölder E., Larcher C., Dierich M. P. Human complement factor H: an additional gene product of 43 kDa isolated from human plasma shows cofactor activity for the cleavage of the third component of complement. Eur J Immunol. 1989 Sep;19(9):1765–1768. doi: 10.1002/eji.1830190936. [DOI] [PubMed] [Google Scholar]
  25. Norman D. G., Barlow P. N., Baron M., Day A. J., Sim R. B., Campbell I. D. Three-dimensional structure of a complement control protein module in solution. J Mol Biol. 1991 Jun 20;219(4):717–725. doi: 10.1016/0022-2836(91)90666-t. [DOI] [PubMed] [Google Scholar]
  26. Ohtsuka H., Imamura T., Matsushita M., Tanase S., Okada H., Ogawa M., Kambara T. Thrombin generates monocyte chemotactic activity from complement factor H. Immunology. 1993 Sep;80(1):140–145. [PMC free article] [PubMed] [Google Scholar]
  27. Pangburn M. K., Atkinson M. A., Meri S. Localization of the heparin-binding site on complement factor H. J Biol Chem. 1991 Sep 5;266(25):16847–16853. [PubMed] [Google Scholar]
  28. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  29. Pierschbacher M. D., Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 1987 Dec 25;262(36):17294–17298. [PubMed] [Google Scholar]
  30. Preissner K. T., Jenne D. Structure of vitronectin and its biological role in haemostasis. Thromb Haemost. 1991 Jul 12;66(1):123–132. [PubMed] [Google Scholar]
  31. Pytela R., Pierschbacher M. D., Argraves S., Suzuki S., Ruoslahti E. Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymol. 1987;144:475–489. doi: 10.1016/0076-6879(87)44196-7. [DOI] [PubMed] [Google Scholar]
  32. Ripoche J., Erdei A., Gilbert D., Al Salihi A., Sim R. B., Fontaine M. Two populations of complement factor H differ in their ability to bind to cell surfaces. Biochem J. 1988 Jul 15;253(2):475–480. doi: 10.1042/bj2530475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schopf R. E., Hammann K. P., Scheiner O., Lemmel E. M., Dierich M. P. Activation of human monocytes by both human beta 1H and C3b. Immunology. 1982 Jun;46(2):307–312. [PMC free article] [PubMed] [Google Scholar]
  34. Sim R. B., Kölble K., McAleer M. A., Dominguez O., Dee V. M. Genetics and deficiencies of the soluble regulatory proteins of the complement system. Int Rev Immunol. 1993;10(1):65–86. doi: 10.3109/08830189309051172. [DOI] [PubMed] [Google Scholar]
  35. Sjaastad M. D., Angres B., Lewis R. S., Nelson W. J. Feedback regulation of cell-substratum adhesion by integrin-mediated intracellular Ca2+ signaling. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8214–8218. doi: 10.1073/pnas.91.17.8214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Skerka C., Hellwage J., Weber W., Tilkorn A., Buck F., Marti T., Kampen E., Beisiegel U., Zipfel P. F. The human factor H-related protein 4 (FHR-4). A novel short consensus repeat-containing protein is associated with human triglyceride-rich lipoproteins. J Biol Chem. 1997 Feb 28;272(9):5627–5634. doi: 10.1074/jbc.272.9.5627. [DOI] [PubMed] [Google Scholar]
  37. Taniguchi-Sidle A., Isenman D. E. Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J Biol Chem. 1992 Jan 5;267(1):635–643. [PubMed] [Google Scholar]
  38. Wright S. D., Weitz J. I., Huang A. J., Levin S. M., Silverstein S. C., Loike J. D. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7734–7738. doi: 10.1073/pnas.85.20.7734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhao Y., Sane D. C. The cell attachment and spreading activity of vitronectin is dependent on the Arg-Gly-Asp sequence. Analysis by construction of RGD and domain deletion mutants. Biochem Biophys Res Commun. 1993 Apr 30;192(2):575–582. doi: 10.1006/bbrc.1993.1454. [DOI] [PubMed] [Google Scholar]
  40. Zipfel P. F., Skerka C. Complement factor H and related proteins: an expanding family of complement-regulatory proteins? Immunol Today. 1994 Mar;15(3):121–126. doi: 10.1016/0167-5699(94)90155-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES