Abstract
The glucocorticoid drug methylprednisolone inhibits respiration in concanavalin A-stimulated rat thymocytes at concentrations that are relevant to its acute clinical efficacy against autoimmune diseases and spinal cord injury. Methylprednisolone affects several processes, including ion cycling, substrate oxidation reactions and RNA/DNA synthesis. The inhibition of respiration used to drive ATP-consuming cycles of Ca2+ and Na+ ions across the plasma membrane has been proposed to be either primary or secondary to restriction of cellular ATP supply. By comparing the effects of methylprednisolone with those of myxothiazol, an inhibitor of the mitochondrial electron transport chain, we show that the effects of methylprednisolone on Ca2+ and Na+ cycling are primary. We propose that methylprednisolone acts by affecting membrane properties to inhibit Ca2+ and Na+ uptake across the plasma membrane and to increase H+ uptake across the mitochondrial membrane, and that other effects are secondary.
Full Text
The Full Text of this article is available as a PDF (257.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akoğlu T., Paydaş S., Bayik M., Lawrence R., Firatli T. Megadose methylprednisolone pulse therapy in adult idiopathic thrombocytopenic purpura. Lancet. 1991 Jan 5;337(8732):56–56. doi: 10.1016/0140-6736(91)93379-n. [DOI] [PubMed] [Google Scholar]
- Bracken M. B., Shepard M. J., Collins W. F., Jr, Holford T. R., Baskin D. S., Eisenberg H. M., Flamm E., Leo-Summers L., Maroon J. C., Marshall L. F. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg. 1992 Jan;76(1):23–31. doi: 10.3171/jns.1992.76.1.0023. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Hafner R. P., Brown G. C. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Biochem J. 1988 Oct 15;255(2):535–539. [PMC free article] [PubMed] [Google Scholar]
- Buttgereit F., Brand M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995 Nov 15;312(Pt 1):163–167. doi: 10.1042/bj3120163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buttgereit F., Brand M. D., Müller M. ConA induced changes in energy metabolism of rat thymocytes. Biosci Rep. 1992 Oct;12(5):381–386. doi: 10.1007/BF01121501. [DOI] [PubMed] [Google Scholar]
- Buttgereit F., Brand M. D., Müller M. Effects of methylprednisolone on the energy metabolism of quiescent and ConA-stimulated thymocytes of the rat. Biosci Rep. 1993 Feb;13(1):41–52. doi: 10.1007/BF01138177. [DOI] [PubMed] [Google Scholar]
- Buttgereit F., Grant A., Müller M., Brand M. D. The effects of methylprednisolone on oxidative phosphorylation in Concanavalin-A-stimulated thymocytes. Top-down elasticity analysis and control analysis. Eur J Biochem. 1994 Jul 15;223(2):513–519. doi: 10.1111/j.1432-1033.1994.tb19020.x. [DOI] [PubMed] [Google Scholar]
- Buttgereit F., Müller M., Rapoport S. M. Quantification of ATP-producing and consuming processes in quiescent pig spleen lymphocytes. Biochem Int. 1991 May;24(1):59–67. [PubMed] [Google Scholar]
- Dalakas M. C. Current treatment of the inflammatory myopathies. Curr Opin Rheumatol. 1994 Nov;6(6):595–601. doi: 10.1097/00002281-199411000-00008. [DOI] [PubMed] [Google Scholar]
- Derendorf H., Möllmann H., Rohdewald P., Rehder J., Schmidt E. W. Kinetics of methylprednisolone and its hemisuccinate ester. Clin Pharmacol Ther. 1985 May;37(5):502–507. doi: 10.1038/clpt.1985.79. [DOI] [PubMed] [Google Scholar]
- Felber S. M., Brand M. D. Factors determining the plasma-membrane potential of lymphocytes. Biochem J. 1982 May 15;204(2):577–585. doi: 10.1042/bj2040577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillevin L., Lhote F. Distinguishing polyarteritis nodosa from microscopic polyangiitis and implications for treatment. Curr Opin Rheumatol. 1995 Jan;7(1):20–24. [PubMed] [Google Scholar]
- Hall E. D. The neuroprotective pharmacology of methylprednisolone. J Neurosurg. 1992 Jan;76(1):13–22. doi: 10.3171/jns.1992.76.1.0013. [DOI] [PubMed] [Google Scholar]
- Job-Deslandre C., Menkes C. J. Administration of methylprednisolone pulse in chronic arthritis in children. Clin Exp Rheumatol. 1991 Jan-Feb;9 (Suppl 6):15–18. [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Brand M. D. Stimulation of respiration by mitogens in rat thymocytes is independent of mitochondrial calcium. Biochem J. 1988 Nov 15;256(1):167–173. doi: 10.1042/bj2560167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller M., Siems W., Buttgereit F., Dumdey R., Rapoport S. M. Quantification of ATP-producing and consuming processes of Ehrlich ascites tumour cells. Eur J Biochem. 1986 Dec 15;161(3):701–705. doi: 10.1111/j.1432-1033.1986.tb10496.x. [DOI] [PubMed] [Google Scholar]
- Nobes C. D., Lakin-Thomas P. L., Brand M. D. The contribution of ATP turnover by the Na+/K+-ATPase to the rate of respiration of hepatocytes. Effects of thyroid status and fatty acids. Biochim Biophys Acta. 1989 Sep 28;976(2-3):241–245. doi: 10.1016/s0005-2728(89)80236-1. [DOI] [PubMed] [Google Scholar]
- Siems W., Dubiel W., Dumdey R., Müller M., Rapoport S. M. Accounting for the ATP-consuming processes in rabbit reticulocytes. Eur J Biochem. 1984 Feb 15;139(1):101–107. doi: 10.1111/j.1432-1033.1984.tb07982.x. [DOI] [PubMed] [Google Scholar]
- Youssef P. P., Cormack J., Evill C. A., Peter D. T., Roberts-Thomson P. J., Ahern M. J., Smith M. D. Neutrophil trafficking into inflamed joints in patients with rheumatoid arthritis, and the effects of methylprednisolone. Arthritis Rheum. 1996 Feb;39(2):216–225. doi: 10.1002/art.1780390207. [DOI] [PubMed] [Google Scholar]
- de Glas-Vos J. W., Krediet R. T., Arisz L. Methylprednisolone pulse therapy in rapidly progressive glomerulonephritis. Neth J Med. 1991 Apr;38(3-4):96–103. [PubMed] [Google Scholar]
