Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):351–356. doi: 10.1042/bj3260351

Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types.

M P Heyes 1, C Y Chen 1, E O Major 1, K Saito 1
PMCID: PMC1218677  PMID: 9291104

Abstract

Substantial increases in the tryptophan-kynurenine pathway metabolites, l-kynurenine and the neurotoxin quinolinic acid, occur in human brain, blood and systemic tissues during immune activation. Studies in vitro have shown that not all human cells are capable of synthesizing quinolinate. To investigate further the mechanisms that limit l-kynurenine and quinolinate production, the activities of kynurenine pathway enzymes and the ability of different human cells to convert pathway intermediates into quinolinate were compared. Stimulation with interferon gamma substantially increased indoleamine 2,3-dioxygenase activity and L-kynurenine production in primary peripheral blood macrophages and fetal brains (astrocytes and neurons), as well as cell lines derived from macrophage/monocytes (THP-1), U373MG astrocytoma, SKHEP1 liver and lung (MRC-9). High activities of kynurenine 3-hydroxylase, kynureninase or 3-hydroxyanthranilate 3,4-dioxygenase were found in interferon-gamma-stimulated macrophages, THP-1 cells and SKHEP1 cells, and these cells made large amounts of quinolinate when supplied with L-tryptophan, L-kynurenine, 3-hydroxykynurenine or 3-hydroxyanthranilate. Quinolinate production by human fetal brain cultures and U373MG cells was restricted by the low activities of kynurenine 3-hydroxylase, kynureninase and 3-hydroxyanthranilate 3,4-dioxygenase, and only small amounts of quinolinate were synthesized when cultures were supplied with L-tryptophan or 3-hydroxyanthranilate. In MRC-9 cells, quinolinate was produced only from 3-hydroxykynurenine and 3-hydroxyanthranilate, consistent with their low kynurenine 3-hydroxylase activity. The results are consistent with the notion that indoleamine 2,3-dioxygenase is an important regulatory enzyme in the production of L-kynurenine and quinolinate. Kynurenine 3-hydroxylase and, in some cells, kynureninase and 3-hydroxyanthranilate 3,4-dioxygenase are important determinants of whether a cell can make quinolinate.

Full Text

The Full Text of this article is available as a PDF (283.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender D. A. Biochemistry of tryptophan in health and disease. Mol Aspects Med. 1983;6(2):101–197. doi: 10.1016/0098-2997(83)90005-5. [DOI] [PubMed] [Google Scholar]
  2. Bender D. A., McCreanor G. M. The preferred route of kynurenine metabolism in the rat. Biochim Biophys Acta. 1982 Jul 16;717(1):56–60. doi: 10.1016/0304-4165(82)90379-8. [DOI] [PubMed] [Google Scholar]
  3. Carlin J. M., Ozaki Y., Byrne G. I., Brown R. R., Borden E. C. Interferons and indoleamine 2,3-dioxygenase: role in antimicrobial and antitumor effects. Experientia. 1989 Jun 15;45(6):535–541. doi: 10.1007/BF01990503. [DOI] [PubMed] [Google Scholar]
  4. Elder G. A., Major E. O. Early appearance of type II astrocytes in developing human fetal brain. Brain Res. 1988 Jul 1;470(1):146–150. doi: 10.1016/0165-3806(88)90211-8. [DOI] [PubMed] [Google Scholar]
  5. Heyes M. P., Achim C. L., Wiley C. A., Major E. O., Saito K., Markey S. P. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J. 1996 Dec 1;320(Pt 2):595–597. doi: 10.1042/bj3200595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heyes M. P., Brew B. J., Martin A., Price R. W., Salazar A. M., Sidtis J. J., Yergey J. A., Mouradian M. M., Sadler A. E., Keilp J. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol. 1991 Feb;29(2):202–209. doi: 10.1002/ana.410290215. [DOI] [PubMed] [Google Scholar]
  7. Heyes M. P., Markey S. P. Quantification of quinolinic acid in rat brain, whole blood, and plasma by gas chromatography and negative chemical ionization mass spectrometry: effects of systemic L-tryptophan administration on brain and blood quinolinic acid concentrations. Anal Biochem. 1988 Oct;174(1):349–359. doi: 10.1016/0003-2697(88)90556-8. [DOI] [PubMed] [Google Scholar]
  8. Heyes M. P., Morrison P. F. Quantification of local de novo synthesis versus blood contributions to quinolinic acid concentrations in brain and systemic tissues. J Neurochem. 1997 Jan;68(1):280–288. doi: 10.1046/j.1471-4159.1997.68010280.x. [DOI] [PubMed] [Google Scholar]
  9. Heyes M. P., Quearry B. J. Quantification of 3-hydroxykynurenine in brain by high-performance liquid chromatography and electrochemical detection. J Chromatogr. 1988 Jul 15;428(2):340–344. doi: 10.1016/s0378-4347(00)83925-0. [DOI] [PubMed] [Google Scholar]
  10. Heyes M. P., Saito K., Crowley J. S., Davis L. E., Demitrack M. A., Der M., Dilling L. A., Elia J., Kruesi M. J., Lackner A. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992 Oct;115(Pt 5):1249–1273. doi: 10.1093/brain/115.5.1249. [DOI] [PubMed] [Google Scholar]
  11. Heyes M. P., Saito K., Jacobowitz D., Markey S. P., Takikawa O., Vickers J. H. Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. FASEB J. 1992 Aug;6(11):2977–2989. doi: 10.1096/fasebj.6.11.1322853. [DOI] [PubMed] [Google Scholar]
  12. Heyes M. P., Saito K., Major E. O., Milstien S., Markey S. P., Vickers J. H. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. Brain. 1993 Dec;116(Pt 6):1425–1450. doi: 10.1093/brain/116.6.1425. [DOI] [PubMed] [Google Scholar]
  13. Heyes M. P., Saito K., Markey S. P. Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J. 1992 May 1;283(Pt 3):633–635. doi: 10.1042/bj2830633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmes E. W. Determination of serum kynurenine and hepatic tryptophan dioxygenase activity by high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):518–525. doi: 10.1016/0003-2697(88)90478-2. [DOI] [PubMed] [Google Scholar]
  15. Major E. O., Vacante D. A. Human fetal astrocytes in culture support the growth of the neurotropic human polyomavirus, JCV. J Neuropathol Exp Neurol. 1989 Jul;48(4):425–436. doi: 10.1097/00005072-198907000-00004. [DOI] [PubMed] [Google Scholar]
  16. Naritsin D. B., Saito K., Markey S. P., Chen C. Y., Heyes M. P. Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. J Neurochem. 1995 Nov;65(5):2217–2226. doi: 10.1046/j.1471-4159.1995.65052217.x. [DOI] [PubMed] [Google Scholar]
  17. Saito K., Chen C. Y., Masana M., Crowley J. S., Markey S. P., Heyes M. P. 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norharmane attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells). Biochem J. 1993 Apr 1;291(Pt 1):11–14. doi: 10.1042/bj2910011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saito K., Crowley J. S., Markey S. P., Heyes M. P. A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J Biol Chem. 1993 Jul 25;268(21):15496–15503. [PubMed] [Google Scholar]
  19. Saito K., Markey S. P., Heyes M. P. Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience. 1992 Nov;51(1):25–39. doi: 10.1016/0306-4522(92)90467-g. [DOI] [PubMed] [Google Scholar]
  20. Saito K., Nowak T. S., Jr, Markey S. P., Heyes M. P. Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J Neurochem. 1993 Jan;60(1):180–192. doi: 10.1111/j.1471-4159.1993.tb05836.x. [DOI] [PubMed] [Google Scholar]
  21. Saito K., Nowak T. S., Jr, Suyama K., Quearry B. J., Saito M., Crowley J. S., Markey S. P., Heyes M. P. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem. 1993 Dec;61(6):2061–2070. doi: 10.1111/j.1471-4159.1993.tb07443.x. [DOI] [PubMed] [Google Scholar]
  22. Saito K., Quearry B. J., Saito M., Nowak T. S., Jr, Markey S. P., Heyes M. P. Kynurenine 3-hydroxylase in brain: species activity differences and effect of gerbil cerebral ischemia. Arch Biochem Biophys. 1993 Nov 15;307(1):104–109. doi: 10.1006/abbi.1993.1567. [DOI] [PubMed] [Google Scholar]
  23. Takikawa O., Yoshida R., Kido R., Hayaishi O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem. 1986 Mar 15;261(8):3648–3653. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES