Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):385–392. doi: 10.1042/bj3260385

Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools.

O R Rosales 1, C M Isales 1, P Q Barrett 1, C Brophy 1, B E Sumpio 1
PMCID: PMC1218682  PMID: 9291109

Abstract

We have previously reported that exposure of endothelial cells to cyclic strain elicited a rapid but transient generation of inositol 1,4,5-trisphosphate (IP3), which reached a peak 10 s after the initiation of cyclic deformation. To address the effect of cyclic strain on intracellular Ca2+ concentration ([Ca2+]i) and its temporal relationship to IP3 generation, confluent bovine aortic endothelial cells were grown on flexible membranes, loaded with aequorin and the membranes placed in a custom-designed flow-through chamber. The chamber was housed inside a photomultiplier tube, and vacuum was utilized to deform the membranes. Our results indicate that the initiation of 10% average strain induced a rapid increase in [Ca2+]i which contained two distinct components: a large initial peak 12 s after the initiation of stretch which closely followed the IP3 peak, and a subsequent lower but sustained phase. Pretreatment with 5 microM GdCl3 for 10 min or nominally Ca2+-free medium (CFM) for 3 min reduced the magnitude of the initial rise and abolished the sustained phase. Repetitive 10% average strain at a frequency of 60 cycles/min also elicited a single IP3 peak at 10 s. However, there was also a large initial [Ca2+]i peak followed by multiple smaller transient [Ca2+]i elevations. Preincubation with 5 microM GdCl3 or CFM diminished the initial [Ca2+]i transient and markedly inhibited the late-phase component. Preincubation with 25 microM 2,5-di-(t-butyl)-1,4-benzohydroquinone (BHQ) attenuated the initial [Ca2+]i transient. Cyclic-strain-mediated IP3 formation in confluent endothelial cells at 10 s, however, was not modified by pretreatment with 25 microM BHQ, 500 microM NiCl2, 10 nM charybdotoxin, 5 microM GdCl3 or CFM. We conclude that in endothelial cells exposed to cyclic strain, Ca2+ enters the cytosol from intracellular and extracellular pools but IP3 formation is not dependent on Ca2+ entry via the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (520.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
  2. Awolesi M. A., Sessa W. C., Sumpio B. E. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest. 1995 Sep;96(3):1449–1454. doi: 10.1172/JCI118181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Awolesi M. A., Widmann M. D., Sessa W. C., Sumpio B. E. Cyclic strain increases endothelial nitric oxide synthase activity. Surgery. 1994 Aug;116(2):439–445. [PubMed] [Google Scholar]
  4. Biagi B. A., Enyeart J. J. Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am J Physiol. 1990 Sep;259(3 Pt 1):C515–C520. doi: 10.1152/ajpcell.1990.259.3.C515. [DOI] [PubMed] [Google Scholar]
  5. Brophy C. M., Mills I., Rosales O., Isales C., Sumpio B. E. Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem Biophys Res Commun. 1993 Jan 29;190(2):576–581. doi: 10.1006/bbrc.1993.1087. [DOI] [PubMed] [Google Scholar]
  6. Buchan K. W., Martin W. Bradykinin induces elevations of cytosolic calcium through mobilisation of intracellular and extracellular pools in bovine aortic endothelial cells. Br J Pharmacol. 1991 Jan;102(1):35–40. doi: 10.1111/j.1476-5381.1991.tb12128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bussolino F., Aglietta M., Sanavio F., Stacchini A., Lauri D., Camussi G. Alkyl-ether phosphoglycerides influence calcium fluxes into human endothelial cells. J Immunol. 1985 Oct;135(4):2748–2753. [PubMed] [Google Scholar]
  8. Cohen C. R., Mills I., Du W., Kamal K., Sumpio B. E. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain. Exp Cell Res. 1997 Feb 25;231(1):184–189. doi: 10.1006/excr.1996.3450. [DOI] [PubMed] [Google Scholar]
  9. Colden-Stanfield M., Schilling W. P., Ritchie A. K., Eskin S. G., Navarro L. T., Kunze D. L. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res. 1987 Nov;61(5):632–640. doi: 10.1161/01.res.61.5.632. [DOI] [PubMed] [Google Scholar]
  10. Demer L. L., Wortham C. M., Dirksen E. R., Sanderson M. J. Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells. Am J Physiol. 1993 Jun;264(6 Pt 2):H2094–H2102. doi: 10.1152/ajpheart.1993.264.6.H2094. [DOI] [PubMed] [Google Scholar]
  11. Docherty R. J. Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma x glioma hybrid (NG108-15) cells. J Physiol. 1988 Apr;398:33–47. doi: 10.1113/jphysiol.1988.sp017027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans L., Frenkel L., Brophy C. M., Rosales O., Sudhaker C. B., Li G., Du W., Sumpio B. E. Activation of diacylglycerol in cultured endothelial cells exposed to cyclic strain. Am J Physiol. 1997 Feb;272(2 Pt 1):C650–C656. doi: 10.1152/ajpcell.1997.272.2.C650. [DOI] [PubMed] [Google Scholar]
  13. Hallam T. J., Jacob R., Merritt J. E. Evidence that agonists stimulate bivalent-cation influx into human endothelial cells. Biochem J. 1988 Oct 1;255(1):179–184. doi: 10.1042/bj2550179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hallam T. J., Pearson J. D. Exogenous ATP raises cytoplasmic free calcium in fura-2 loaded piglet aortic endothelial cells. FEBS Lett. 1986 Oct 20;207(1):95–99. doi: 10.1016/0014-5793(86)80019-9. [DOI] [PubMed] [Google Scholar]
  15. Hallam T. J., Pearson J. D., Needham L. A. Thrombin-stimulated elevation of human endothelial-cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J. 1988 Apr 1;251(1):243–249. doi: 10.1042/bj2510243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansen D. E., Craig C. S., Hondeghem L. M. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990 Mar;81(3):1094–1105. doi: 10.1161/01.cir.81.3.1094. [DOI] [PubMed] [Google Scholar]
  17. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  18. Iba T., Maitz S., Furbert T., Rosales O., Widmann M. D., Spillane B., Shin T., Sonoda T., Sumpio B. E. Effect of cyclic stretch on endothelial cells from different vascular beds. Circ Shock. 1991 Dec;35(4):193–198. [PubMed] [Google Scholar]
  19. Iba T., Sumpio B. E. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc Res. 1991 Nov;42(3):245–254. doi: 10.1016/0026-2862(91)90059-k. [DOI] [PubMed] [Google Scholar]
  20. Iba T., Sumpio B. E. Tissue plasminogen activator expression in endothelial cells exposed to cyclic strain in vitro. Cell Transplant. 1992;1(1):43–50. doi: 10.1177/096368979200100108. [DOI] [PubMed] [Google Scholar]
  21. Isales C. M., Bollag W. B., Kiernan L. C., Barrett P. Q. Effect of ANP on sustained aldosterone secretion stimulated by angiotensin II. Am J Physiol. 1989 Jan;256(1 Pt 1):C89–C95. doi: 10.1152/ajpcell.1989.256.1.C89. [DOI] [PubMed] [Google Scholar]
  22. Jacob R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J Physiol. 1990 Feb;421:55–77. doi: 10.1113/jphysiol.1990.sp017933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johns A., Lategan T. W., Lodge N. J., Ryan U. S., Van Breemen C., Adams D. J. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue Cell. 1987;19(6):733–745. doi: 10.1016/0040-8166(87)90015-2. [DOI] [PubMed] [Google Scholar]
  24. Kass G. E., Llopis J., Chow S. C., Duddy S. K., Orrenius S. Receptor-operated calcium influx in rat hepatocytes. Identification and characterization using manganese. J Biol Chem. 1990 Oct 15;265(29):17486–17492. [PubMed] [Google Scholar]
  25. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  26. Liedtke C. M. Activation of PtdIns(4,5)P2-sensitive phospholipase C in rabbit tracheal epithelial cells. Am J Physiol. 1994 Feb;266(2 Pt 1):C397–C405. doi: 10.1152/ajpcell.1994.266.2.C397. [DOI] [PubMed] [Google Scholar]
  27. Lückhoff A., Zeh R., Busse R. Desensitization of the bradykinin-induced rise in intracellular free calcium in cultured endothelial cells. Pflugers Arch. 1988 Oct;412(6):654–658. doi: 10.1007/BF00583768. [DOI] [PubMed] [Google Scholar]
  28. Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
  29. Matsumoto H., Baron C. B., Coburn R. F. Smooth muscle stretch-activated phospholipase C activity. Am J Physiol. 1995 Feb;268(2 Pt 1):C458–C465. doi: 10.1152/ajpcell.1995.268.2.C458. [DOI] [PubMed] [Google Scholar]
  30. Mills I., Letsou G., Rabban J., Sumpio B., Gewirtz H. Mechanosensitive adenylate cyclase activity in coronary vascular smooth muscle cells. Biochem Biophys Res Commun. 1990 Aug 31;171(1):143–147. doi: 10.1016/0006-291x(90)91368-3. [DOI] [PubMed] [Google Scholar]
  31. Mo M., Eskin S. G., Schilling W. P. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am J Physiol. 1991 May;260(5 Pt 2):H1698–H1707. doi: 10.1152/ajpheart.1991.260.5.H1698. [DOI] [PubMed] [Google Scholar]
  32. Morris C. E., Horn R. Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science. 1991 Mar 8;251(4998):1246–1249. doi: 10.1126/science.1706535. [DOI] [PubMed] [Google Scholar]
  33. Naruse K., Sokabe M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol. 1993 Apr;264(4 Pt 1):C1037–C1044. doi: 10.1152/ajpcell.1993.264.4.C1037. [DOI] [PubMed] [Google Scholar]
  34. Nathanson M. H., Gautam A., Bruck R., Isales C. M., Boyer J. L. Effects of Ca2+ agonists on cytosolic Ca2+ in isolated hepatocytes and on bile secretion in the isolated perfused rat liver. Hepatology. 1992 Jan;15(1):107–116. doi: 10.1002/hep.1840150119. [DOI] [PubMed] [Google Scholar]
  35. Nollert M. U., Eskin S. G., McIntire L. V. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem Biophys Res Commun. 1990 Jul 16;170(1):281–287. doi: 10.1016/0006-291x(90)91271-s. [DOI] [PubMed] [Google Scholar]
  36. Rhee S. G., Choi K. D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 1992 Jun 25;267(18):12393–12396. [PubMed] [Google Scholar]
  37. Rosales O. R., Sumpio B. E. Changes in cyclic strain increase inositol trisphosphate and diacylglycerol in endothelial cells. Am J Physiol. 1992 Apr;262(4 Pt 1):C956–C962. doi: 10.1152/ajpcell.1992.262.4.C956. [DOI] [PubMed] [Google Scholar]
  38. Rosales O. R., Sumpio B. E. Protein kinase C is a mediator of the adaptation of vascular endothelial cells to cyclic strain in vitro. Surgery. 1992 Aug;112(2):459–466. [PubMed] [Google Scholar]
  39. Rossier M. F., Python C. P., Burnay M. M., Schlegel W., Vallotton M. B., Capponi A. M. Thapsigargin inhibits voltage-activated calcium channels in adrenal glomerulosa cells. Biochem J. 1993 Dec 1;296(Pt 2):309–312. doi: 10.1042/bj2960309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rotrosen D., Gallin J. I. Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers. J Cell Biol. 1986 Dec;103(6 Pt 1):2379–2387. doi: 10.1083/jcb.103.6.2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schilling W. P., Ritchie A. K., Navarro L. T., Eskin S. G. Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells. Am J Physiol. 1988 Aug;255(2 Pt 2):H219–H227. doi: 10.1152/ajpheart.1988.255.2.H219. [DOI] [PubMed] [Google Scholar]
  42. Sigurdson W. J., Sachs F., Diamond S. L. Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am J Physiol. 1993 Jun;264(6 Pt 2):H1745–H1752. doi: 10.1152/ajpheart.1993.264.6.H1745. [DOI] [PubMed] [Google Scholar]
  43. Sumpio B. E., Banes A. J., Buckley M., Johnson G., Jr Alterations in aortic endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. J Vasc Surg. 1988 Jan;7(1):130–138. [PubMed] [Google Scholar]
  44. Sumpio B. E., Banes A. J., Levin L. G., Johnson G., Jr Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg. 1987 Sep;6(3):252–256. [PubMed] [Google Scholar]
  45. Sumpio B. E., Banes A. J. Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic mechanical deformation. Surgery. 1988 Aug;104(2):383–389. [PubMed] [Google Scholar]
  46. Sumpio B. E., Widmann M. D. Enhanced production of endothelium-derived contracting factor by endothelial cells subjected to pulsatile stretch. Surgery. 1990 Aug;108(2):277–282. [PubMed] [Google Scholar]
  47. Sánchez-Margalet V., Goberna R. Pancreastatin activates pertussis toxin-sensitive guanylate cyclase and pertussis toxin-insensitive phospholipase C in rat liver membranes. J Cell Biochem. 1994 Jun;55(2):173–181. doi: 10.1002/jcb.240550204. [DOI] [PubMed] [Google Scholar]
  48. Tkachuk V. A., Voyno-Yasenetskaya T. A. Two types of G proteins involved in regulation of phosphoinositide turnover in pulmonary endothelial cells. Am J Physiol. 1991 Oct;261(4 Suppl):118–122. doi: 10.1152/ajpheart.1991.261.4.118. [DOI] [PubMed] [Google Scholar]
  49. Watson S. P., Poole A., Asselin J. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry. Mol Pharmacol. 1995 Apr;47(4):823–830. [PubMed] [Google Scholar]
  50. Yang X. C., Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989 Feb 24;243(4894 Pt 1):1068–1071. doi: 10.1126/science.2466333. [DOI] [PubMed] [Google Scholar]
  51. Yano Y., Geibel J., Sumpio B. E. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol. 1996 Aug;271(2 Pt 1):C635–C649. doi: 10.1152/ajpcell.1996.271.2.C635. [DOI] [PubMed] [Google Scholar]
  52. Yano Y., Saito Y., Narumiya S., Sumpio B. E. Involvement of rho p21 in cyclic strain-induced tyrosine phosphorylation of focal adhesion kinase (pp125FAK), morphological changes and migration of endothelial cells. Biochem Biophys Res Commun. 1996 Jul 16;224(2):508–515. doi: 10.1006/bbrc.1996.1057. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES