Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):393–400. doi: 10.1042/bj3260393

Early steps in glycosylphosphatidylinositol biosynthesis in Leishmania major.

T K Smith 1, F C Milne 1, D K Sharma 1, A Crossman 1, J S Brimacombe 1, M A Ferguson 1
PMCID: PMC1218683  PMID: 9291110

Abstract

A cell-free system based on washed Leishmania major membranes was labelled with GDP-[3H]Man in the presence of synthetic glucosaminyl-phosphatidylinositol (GlcN-PI) and N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). In both cases, the major radiolabelled products were Man alpha 1-4GlcN alpha 1-6myo-inositol1-HPO4- (sn-1, 2-dipalmitoylglycerol) and Man alpha 1-4GlcN alpha 1-6myo-inositol1-HPO4- (sn-1-palmitoyl-2-lyso-glycerol), to which an additional d-mannose residue was added when a chase with an excess of GDP-Man was performed. The L. major cell-free system can therefore be used to observe the actions of four enzymes, namely GlcNAc-PI de-N-acetylase, Dol-P-Man-GlcN-PI alpha 1-4-mannosyltransferase, a phospholipase A2-like activity and a second alpha-mannosyltransferase activity. The substrate specificities of the first two of these enzymes were studied using a series of substrate analogues. GlcNAc-PI de-N-acetylase was tested against a variety of N-acylated GlcN-PI substrates and was able to cleave N-acetyl and N-propyl groups but not larger groups such as N-butyl, N-isobutyl, N-pentyl and N-hexyl. The Dol-P-Man-GlcN-PI alpha1-4-mannosyltransferase activity required the amino group of the glucosamine residue and the d-configuration of the myo-inositol residue of the GlcN-PI acceptor substrate.

Full Text

The Full Text of this article is available as a PDF (361.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr V., Stierhof Y. D., Ilg T., Demar M., Quinten M., Overath P. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol. 1993 Mar;58(1):107–121. doi: 10.1016/0166-6851(93)90095-f. [DOI] [PubMed] [Google Scholar]
  2. Brittingham A., Mosser D. M. Exploitation of the complement system by Leishmania promastigotes. Parasitol Today. 1996 Nov;12(11):444–447. doi: 10.1016/0169-4758(96)10067-3. [DOI] [PubMed] [Google Scholar]
  3. Brown G. M., Millar A. R., Masterson C., Brimacombe J. S., Nikolaev A. V., Ferguson M. A. Synthetic phospho-oligosaccharide fragments of lipophosphoglycan as acceptors for Leishmania major alpha-D-mannosylphosphate transferase. Eur J Biochem. 1996 Dec 1;242(2):410–416. doi: 10.1111/j.1432-1033.1996.0410r.x. [DOI] [PubMed] [Google Scholar]
  4. Butcher B. A., Turco S. J., Hilty B. A., Pimenta P. F., Panunzio M., Sacks D. L. Deficiency in beta1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sand fly interaction. J Biol Chem. 1996 Aug 23;271(34):20573–20579. doi: 10.1074/jbc.271.34.20573. [DOI] [PubMed] [Google Scholar]
  5. Costello L. C., Orlean P. Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A. J Biol Chem. 1992 Apr 25;267(12):8599–8603. [PubMed] [Google Scholar]
  6. Doering T. L., Masterson W. J., Englund P. T., Hart G. W. Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein. Origin of the non-acetylated glucosamine. J Biol Chem. 1989 Jul 5;264(19):11168–11173. [PubMed] [Google Scholar]
  7. Doerrler W. T., Ye J., Falck J. R., Lehrman M. A. Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue. J Biol Chem. 1996 Oct 25;271(43):27031–27038. doi: 10.1074/jbc.271.43.27031. [DOI] [PubMed] [Google Scholar]
  8. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  9. Fankhauser C., Homans S. W., Thomas-Oates J. E., McConville M. J., Desponds C., Conzelmann A., Ferguson M. A. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 15;268(35):26365–26374. [PubMed] [Google Scholar]
  10. Gerold P., Dieckmann-Schuppert A., Schwarz R. T. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem. 1994 Jan 28;269(4):2597–2606. [PubMed] [Google Scholar]
  11. Güther M. L., Ferguson M. A. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J. 1995 Jul 3;14(13):3080–3093. doi: 10.1002/j.1460-2075.1995.tb07311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Güther M. L., Masterson W. J., Ferguson M. A. The effects of phenylmethylsulfonyl fluoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J Biol Chem. 1994 Jul 15;269(28):18694–18701. [PubMed] [Google Scholar]
  13. Güther M. L., Treumann A., Ferguson M. A. Molecular species analysis and quantification of the glycosylphosphatidylinositol intermediate glycolipid C from Trypanosoma brucei. Mol Biochem Parasitol. 1996 May;77(2):137–145. doi: 10.1016/0166-6851(96)02585-6. [DOI] [PubMed] [Google Scholar]
  14. Güther M. L., de Almeida M. L., Yoshida N., Ferguson M. A. Structural studies on the glycosylphosphatidylinositol membrane anchor of Trypanosoma cruzi 1G7-antigen. The structure of the glycan core. J Biol Chem. 1992 Apr 5;267(10):6820–6828. [PubMed] [Google Scholar]
  15. Heise N., Raper J., Buxbaum L. U., Peranovich T. M., de Almeida M. L. Identification of complete precursors for the glycosylphosphatidylinositol protein anchors of Trypanosoma cruzi. J Biol Chem. 1996 Jul 12;271(28):16877–16887. doi: 10.1074/jbc.271.28.16877. [DOI] [PubMed] [Google Scholar]
  16. Hirose S., Prince G. M., Sevlever D., Ravi L., Rosenberry T. L., Ueda E., Medof M. E. Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine. J Biol Chem. 1992 Aug 25;267(24):16968–16974. [PubMed] [Google Scholar]
  17. Masterson W. J., Doering T. L., Hart G. W., Englund P. T. A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell. 1989 Mar 10;56(5):793–800. doi: 10.1016/0092-8674(89)90684-3. [DOI] [PubMed] [Google Scholar]
  18. Masterson W. J., Raper J., Doering T. L., Hart G. W., Englund P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul 13;62(1):73–80. doi: 10.1016/0092-8674(90)90241-6. [DOI] [PubMed] [Google Scholar]
  19. McConville M. J., Blackwell J. M. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem. 1991 Aug 15;266(23):15170–15179. [PubMed] [Google Scholar]
  20. McConville M. J., Collidge T. A., Ferguson M. A., Schneider P. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J Biol Chem. 1993 Jul 25;268(21):15595–15604. [PubMed] [Google Scholar]
  21. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McConville M. J., Schnur L. F., Jaffe C., Schneider P. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochem J. 1995 Sep 15;310(Pt 3):807–818. doi: 10.1042/bj3100807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McConville M. J., Turco S. J., Ferguson M. A., Sacks D. L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 1992 Oct;11(10):3593–3600. doi: 10.1002/j.1460-2075.1992.tb05443.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Menon A. K., Eppinger M., Mayor S., Schwarz R. T. Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. EMBO J. 1993 May;12(5):1907–1914. doi: 10.1002/j.1460-2075.1993.tb05839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Menon A. K., Mayor S., Schwarz R. T. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 1990 Dec;9(13):4249–4258. doi: 10.1002/j.1460-2075.1990.tb07873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Menon A. K., Schwarz R. T., Mayor S., Cross G. A. Cell-free synthesis of glycosyl-phosphatidylinositol precursors for the glycolipid membrane anchor of Trypanosoma brucei variant surface glycoproteins. Structural characterization of putative biosynthetic intermediates. J Biol Chem. 1990 Jun 5;265(16):9033–9042. [PubMed] [Google Scholar]
  27. Milne K. G., Ferguson M. A., Masterson W. J. Inhibition of the GlcNAc transferase of the glycosylphosphatidylinositol anchor biosynthesis in African trypanosomes. Eur J Biochem. 1992 Sep 1;208(2):309–314. doi: 10.1111/j.1432-1033.1992.tb17188.x. [DOI] [PubMed] [Google Scholar]
  28. Milne K. G., Field R. A., Masterson W. J., Cottaz S., Brimacombe J. S., Ferguson M. A. Partial purification and characterization of the N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol anchor biosynthesis in African trypanosomes. J Biol Chem. 1994 Jun 10;269(23):16403–16408. [PubMed] [Google Scholar]
  29. Pimenta P. F., Saraiva E. M., Rowton E., Modi G. B., Garraway L. A., Beverley S. M., Turco S. J., Sacks D. L. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9155–9159. doi: 10.1073/pnas.91.19.9155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pimenta P. F., Turco S. J., McConville M. J., Lawyer P. G., Perkins P. V., Sacks D. L. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992 Jun 26;256(5065):1812–1815. doi: 10.1126/science.1615326. [DOI] [PubMed] [Google Scholar]
  31. Pingel S., Field R. A., Güther M. L., Duszenko M., Ferguson M. A. The hydrophobic mannoside Man alpha 1-6Man alpha 1-S-(CH2)7-CH3 acts as an acceptor for the UDP-Gal:glycosylphosphatidylinositol anchor alpha 1,3-galactosyltransferase of Trypanosoma brucei. Biochem J. 1995 Aug 1;309(Pt 3):877–882. doi: 10.1042/bj3090877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Proudfoot L., Schneider P., Ferguson M. A., McConville M. J. Biosynthesis of the glycolipid anchor of lipophosphoglycan and the structurally related glycoinositolphospholipids from Leishmania major. Biochem J. 1995 May 15;308(Pt 1):45–55. doi: 10.1042/bj3080045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Puentes S. M., Sacks D. L., da Silva R. P., Joiner K. A. Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface lipophosphoglycan. J Exp Med. 1988 Mar 1;167(3):887–902. doi: 10.1084/jem.167.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Puoti A., Conzelmann A. Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H. J Biol Chem. 1993 Apr 5;268(10):7215–7224. [PubMed] [Google Scholar]
  35. Puoti A., Conzelmann A. Structural characterization of free glycolipids which are potential precursors for glycophosphatidylinositol anchors in mouse thymoma cell lines. J Biol Chem. 1992 Nov 5;267(31):22673–22680. [PubMed] [Google Scholar]
  36. Sacks D. L., Pimenta P. F., McConville M. J., Schneider P., Turco S. J. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med. 1995 Feb 1;181(2):685–697. doi: 10.1084/jem.181.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schneider P., Ferguson M. A., McConville M. J., Mehlert A., Homans S. W., Bordier C. Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. J Biol Chem. 1990 Oct 5;265(28):16955–16964. [PubMed] [Google Scholar]
  38. Schneider P., Ferguson M. A. Microscale analysis of glycosylphosphatidylinositol structures. Methods Enzymol. 1995;250:614–630. doi: 10.1016/0076-6879(95)50100-2. [DOI] [PubMed] [Google Scholar]
  39. Schneider P., Rosat J. P., Ransijn A., Ferguson M. A., McConville M. J. Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major. Biochem J. 1993 Oct 15;295(Pt 2):555–564. doi: 10.1042/bj2950555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids. EMBO J. 1994 Jun 15;13(12):2789–2796. doi: 10.1002/j.1460-2075.1994.tb06572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith T. K., Cottaz S., Brimacombe J. S., Ferguson M. A. Substrate specificity of the dolichol phosphate mannose: glucosaminyl phosphatidylinositol alpha1-4-mannosyltransferase of the glycosylphosphatidylinositol biosynthetic pathway of African trypanosomes. J Biol Chem. 1996 Mar 15;271(11):6476–6482. doi: 10.1074/jbc.271.11.6476. [DOI] [PubMed] [Google Scholar]
  42. Stevens V. L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J. 1995 Sep 1;310(Pt 2):361–370. doi: 10.1042/bj3100361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tomavo S., Dubremetz J. F., Schwarz R. T. Biosynthesis of glycolipid precursors for glycosylphosphatidylinositol membrane anchors in a Toxoplasma gondii cell-free system. J Biol Chem. 1992 Oct 25;267(30):21446–21458. [PubMed] [Google Scholar]
  44. Winter G., Fuchs M., McConville M. J., Stierhof Y. D., Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci. 1994 Sep;107(Pt 9):2471–2482. doi: 10.1242/jcs.107.9.2471. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES