Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):401–405. doi: 10.1042/bj3260401

Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyl cyclase.

M Ziegler 1, D Jorcke 1, M Schweiger 1
PMCID: PMC1218684  PMID: 9291111

Abstract

The present investigation identifies bovine liver mitochondrial NADase (NAD+ glycohydrolase) as a member of the class of bifunctional ADP-ribosyl cyclases/cyclic ADP-ribose hydrolases, known to be potential second messenger enzymes. These enzymes catalyse the synthesis and degradation of cyclic ADP-ribose, a potent intracellular calcium-mobilizing agent. The mitochondrial enzyme utilized the NAD+ analogues nicotinamide guanine dinucleotide (NGD+) and nicotinamide hypoxanthine dinucleotide (NHD+) to form fluorescent cyclic purine nucleoside diphosphoriboses. ADP-ribosyl cyclase activity was also demonstrated using 32P-labelled NAD+ as substrate. The identity of NADase and ADP-ribosyl cyclase was supported by their co-migration in SDS/polyacrylamide gels. Cyclase activity was visualized directly within the gel by detecting the formation of fluorescent cyclic IDP-ribose from NHD+. The enzyme catalysed the hydrolysis of cyclic ADP-ribose to ADP-ribose. Moreover, in the presence of nicotinamide and cyclic ADP-ribose the enzyme synthesized NAD+. Both the ADP-ribosyl cyclase and NADase activities of the enzyme were strongly inhibited by reducing agents. Treatment of the NADase with dithiothreitol caused the apparent inactivation of the enzyme. Subsequent removal of the reducing agent and addition of oxidized glutathione led to a partial recovery of enzymic activity. The results support a model for pro-oxidant-induced calcium release from mitochondria involving cyclic ADP-ribose as a specific messenger, rather than the non-enzymic modification of proteins by ADP-ribose.

Full Text

The Full Text of this article is available as a PDF (294.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrio J. R., Secrist J. A., 3rd, Leonard N. J. A fluorescent analog of nicotinamide adenine dinucleotide. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2039–2042. doi: 10.1073/pnas.69.8.2039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cayama E., Apitz-Castro R. Substrate-dependent, thiol-dependent, inactivation of pig brain nicotinamide adenine dinucleotide glycohydrolase. J Biol Chem. 1973 Sep 25;248(18):6479–6483. [PubMed] [Google Scholar]
  3. Crompton M., Ellinger H., Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988 Oct 1;255(1):357–360. [PMC free article] [PubMed] [Google Scholar]
  4. Frei B., Richter C. Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry. 1988 Jan 26;27(2):529–535. doi: 10.1021/bi00402a004. [DOI] [PubMed] [Google Scholar]
  5. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  6. Graeff R. M., Walseth T. F., Hill H. K., Lee H. C. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry. 1996 Jan 16;35(2):379–386. doi: 10.1021/bi952083f. [DOI] [PubMed] [Google Scholar]
  7. Guida L., Franco L., Zocchi E., De Flora A. Structural role of disulfide bridges in the cyclic ADP-ribose related bifunctional ectoenzyme CD38. FEBS Lett. 1995 Jul 24;368(3):481–484. doi: 10.1016/0014-5793(95)00715-l. [DOI] [PubMed] [Google Scholar]
  8. Hilz H., Koch R., Fanick W., Klapproth K., Adamietz P. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3929–3933. doi: 10.1073/pnas.81.13.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  10. Inageda K., Takahashi K., Tokita K., Nishina H., Kanaho Y., Kukimoto I., Kontani K., Hoshino S., Katada T. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen. J Biochem. 1995 Jan;117(1):125–131. doi: 10.1093/oxfordjournals.jbchem.a124698. [DOI] [PubMed] [Google Scholar]
  11. Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
  12. Kukimoto I., Hoshino S., Kontani K., Inageda K., Nishina H., Takahashi K., Katada T. Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD+ glycohydrolase activity. Eur J Biochem. 1996 Jul 1;239(1):177–182. doi: 10.1111/j.1432-1033.1996.0177u.x. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lee H. C., Aarhus R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 1991 Mar;2(3):203–209. doi: 10.1091/mbc.2.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee H. C., Galione A., Walseth T. F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam Horm. 1994;48:199–257. doi: 10.1016/s0083-6729(08)60499-9. [DOI] [PubMed] [Google Scholar]
  16. Lee H. C., Walseth T. F., Bratt G. T., Hayes R. N., Clapper D. L. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jan 25;264(3):1608–1615. [PubMed] [Google Scholar]
  17. Lötscher H. R., Winterhalter K. H., Carafoli E., Richter C. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem. 1980 Oct 10;255(19):9325–9330. [PubMed] [Google Scholar]
  18. Masmoudi A., Islam F., Mandel P. ADP-ribosylation of highly purified rat brain mitochondria. J Neurochem. 1988 Jul;51(1):188–193. doi: 10.1111/j.1471-4159.1988.tb04854.x. [DOI] [PubMed] [Google Scholar]
  19. Masmoudi A., Mandel P. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry. 1987 Apr 7;26(7):1965–1969. doi: 10.1021/bi00381a027. [DOI] [PubMed] [Google Scholar]
  20. Richter C., Kass G. E. Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation, and differentiation. Chem Biol Interact. 1991;77(1):1–23. doi: 10.1016/0009-2797(91)90002-o. [DOI] [PubMed] [Google Scholar]
  21. Richter C., Winterhalter K. H., Baumhüter S., Lötscher H. R., Moser B. ADP-ribosylation in inner membrane of rat liver mitochondria. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3188–3192. doi: 10.1073/pnas.80.11.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schweizer M., Richter C. Gliotoxin stimulates Ca2+ release from intact rat liver mitochondria. Biochemistry. 1994 Nov 15;33(45):13401–13405. doi: 10.1021/bi00249a028. [DOI] [PubMed] [Google Scholar]
  23. Schweizer M., Schlegel J., Baumgartner D., Richter C. Sensitivity of mitochondrial peptidyl-prolyl cis-trans isomerase, pyridine nucleotide hydrolysis and Ca2+ release to cyclosporine A and related compounds. Biochem Pharmacol. 1993 Feb 9;45(3):641–646. doi: 10.1016/0006-2952(93)90138-m. [DOI] [PubMed] [Google Scholar]
  24. Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
  25. Tohgo A., Takasawa S., Noguchi N., Koguma T., Nata K., Sugimoto T., Furuya Y., Yonekura H., Okamoto H. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J Biol Chem. 1994 Nov 18;269(46):28555–28557. [PubMed] [Google Scholar]
  26. Zhang J., Ziegler M., Schneider R., Klocker H., Auer B., Schweiger M. Identification and purification of a bovine liver mitochondrial NAD(+)-glycohydrolase. FEBS Lett. 1995 Dec 27;377(3):530–534. doi: 10.1016/0014-5793(95)01366-0. [DOI] [PubMed] [Google Scholar]
  27. Ziegler M., Jorcke D., Zhang J., Schneider R., Klocker H., Auer B., Schweiger M. Characterization of detergent-solubilized beef liver mitochondrial NAD+ glycohydrolase and its truncated hydrosoluble form. Biochemistry. 1996 Apr 23;35(16):5207–5212. doi: 10.1021/bi9527698. [DOI] [PubMed] [Google Scholar]
  28. Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES