Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):471–477. doi: 10.1042/bj3260471

Isolation, cloning and characterization of a low-molecular-mass purine nucleoside- and nucleotide-binding protein.

J Gilmour 1, N Liang 1, J M Lowenstein 1
PMCID: PMC1218693  PMID: 9291120

Abstract

A purine nucleoside- and nucleotide-binding protein has been isolated from extracts of rat and rabbit heart, calf aortic smooth muscle and rat liver using an affinity column containing adenosine bound through the N6-position. The protein, which was eluted by adenosine, was cloned and expressed in Escherichia coli. The deduced amino acid sequence has a calculated Mr of 13693 (p13.7). The expressed protein has properties identical with the protein isolated from heart and liver, including an anomalous, apparent Mr of 15300, observed on gel electrophoresis. Gel filtration shows it to be a dimer. p13.7 differs by only three amino acids out of 125 from protein kinase C inhibitor 1 [Pearson, DeWald, Mathews, Mozier, Zürcher-Neely, Heinrikson, Morris, McCubbin, McDonald, Fraser et al. (1990) J. Biol. Chem. 265, 4583-4591]. However, we have not been able to demonstrate inhibition of protein kinase C by physiological concentrations of p13.7, regardless of whether it was isolated from tissue extracts or expressed in E. coli. p13.7 is a member of the histidine triad motif family of proteins [Séraphin (1992) J. DNA Sequencing Mapping 3, 177-179]. The affinity of p13.7 for a number of different purine nucleosides and nucleotides, as measured by fluorescence titration and gel filtration, falls within the range 5-50 microM. On the basis of these properties and its crystal structure [Brenner, Garrison, Gilmour, Peisach, Ringe, Petsko and Lowenstein (1997) Nature Struct. Biol. 4, 231-238], we have coined the acronym HINT (histidine triad nucleotide-binding motif) to describe the family of proteins of which p13.7 is a member. Other proteins that bind to the affinity column have been identified as malate and lactate dehydrogenases, cAMP-binding proteins, adenosine kinase and S-adenosylhomocysteine hydrolase.

Full Text

The Full Text of this article is available as a PDF (497.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes L. D., Garrison P. N., Siprashvili Z., Guranowski A., Robinson A. K., Ingram S. W., Croce C. M., Ohta M., Huebner K. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5',5"'-P1,P3-triphosphate hydrolase. Biochemistry. 1996 Sep 10;35(36):11529–11535. doi: 10.1021/bi961415t. [DOI] [PubMed] [Google Scholar]
  2. Bembenek M. E. Isolation of two novel adenosine binding proteins from bovine brain. Biochem Biophys Res Commun. 1990 Apr 30;168(2):702–708. doi: 10.1016/0006-291x(90)92378-d. [DOI] [PubMed] [Google Scholar]
  3. Berne R. M., Rubio R. Adenine nucleotide metabolism in the heart. Circ Res. 1974 Sep;35 (Suppl 3):109–120. [PubMed] [Google Scholar]
  4. Brenner C., Garrison P., Gilmour J., Peisach D., Ringe D., Petsko G. A., Lowenstein J. M. Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins. Nat Struct Biol. 1997 Mar;4(3):231–238. doi: 10.1038/nsb0397-231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodelius P., Larsson P. O., Mosbach K. The synthesis of three AMP-analogues: N6-(6-aminohexyl)-adenosine 5'-monophosphate, N6-(6-aminohexyl)-adenosine 2',5'-bisphosphate, and N6-(6-aminohexyl)-adenosine 3',5'-bisphosphate and their application as general ligands in biospecific affinity chromatography. Eur J Biochem. 1974 Aug 15;47(1):81–89. doi: 10.1111/j.1432-1033.1974.tb03670.x. [DOI] [PubMed] [Google Scholar]
  6. Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
  7. Brzoska P. M., Chen H., Zhu Y., Levin N. A., Disatnik M. H., Mochly-Rosen D., Murnane J. P., Christman M. F. The product of the ataxia-telangiectasia group D complementing gene, ATDC, interacts with a protein kinase C substrate and inhibitor. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7824–7828. doi: 10.1073/pnas.92.17.7824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clardy J. The chemistry of signal transduction. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):56–61. doi: 10.1073/pnas.92.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cuatrecasas P., Parikh I. Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry. 1972 Jun 6;11(12):2291–2299. doi: 10.1021/bi00762a013. [DOI] [PubMed] [Google Scholar]
  10. Elalaoui A., Divita G., Maury G., Imbach J. L., Goody R. S. Intrinsic tryptophan fluorescence of bovine liver adenosine kinase, characterization of ligand binding sites and conformational changes. Eur J Biochem. 1994 Apr 15;221(2):839–846. doi: 10.1111/j.1432-1033.1994.tb18798.x. [DOI] [PubMed] [Google Scholar]
  11. Folbergrová J., Zhao Q., Katsura K., Siesjö B. K. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5057–5061. doi: 10.1073/pnas.92.11.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghosh S., Lowenstein J. M. A multifunctional vector system for heterologous expression of proteins in Escherichia coli. Expression of native and hexahistidyl fusion proteins, rapid purification of the fusion proteins, and removal of fusion peptide by Kex2 protease. Gene. 1996 Oct 17;176(1-2):249–255. doi: 10.1016/0378-1119(96)00260-0. [DOI] [PubMed] [Google Scholar]
  13. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  14. Huang Y., Garrison P. N., Barnes L. D. Cloning of the Schizosaccharomyces pombe gene encoding diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) asymmetrical hydrolase: sequence similarity with the histidine triad (HIT) protein family. Biochem J. 1995 Dec 15;312(Pt 3):925–932. doi: 10.1042/bj3120925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kang Y. H., Mallet R. T., Bünger R. Coronary autoregulation and purine release in normoxic heart at various cytoplasmic phosphorylation potentials: disparate effects of adenosine. Pflugers Arch. 1992 Jun;421(2-3):188–199. doi: 10.1007/BF00374826. [DOI] [PubMed] [Google Scholar]
  16. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  17. Liang C. S., Lowenstein J. M. Metabolic control of the circulation. Effects of acetate and pyruvate. J Clin Invest. 1978 Nov;62(5):1029–1038. doi: 10.1172/JCI109207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lima C. D., Klein M. G., Weinstein I. B., Hendrickson W. A. Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5357–5362. doi: 10.1073/pnas.93.11.5357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lowenstein J. M., Goodman M. N. The purine nucleotide cycle in skeletal muscle. Fed Proc. 1978 Jul;37(9):2308–2312. [PubMed] [Google Scholar]
  20. MCILWAIN H., BUDDLE H. L. Techniques in tissue metabolism. I. A mechanical chopper. Biochem J. 1953 Feb;53(3):412–420. doi: 10.1042/bj0530412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McDonald J. R., Gröschel-Stewart U., Walsh M. P. Properties and distribution of the protein inhibitor (Mr 17,000) of protein kinase C. Biochem J. 1987 Mar 15;242(3):695–705. doi: 10.1042/bj2420695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McDonald J. R., Walsh M. P. Ca2+-binding proteins from bovine brain including a potent inhibitor of protein kinase C. Biochem J. 1985 Dec 1;232(2):559–567. doi: 10.1042/bj2320559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mozier N. M., Walsh M. P., Pearson J. D. Characterization of a novel zinc binding site of protein kinase C inhibitor-1. FEBS Lett. 1991 Feb 11;279(1):14–18. doi: 10.1016/0014-5793(91)80238-x. [DOI] [PubMed] [Google Scholar]
  24. Naito Y., Lowenstein J. M. 5'-Nucleotidase from rat heart. Biochemistry. 1981 Sep 1;20(18):5188–5194. doi: 10.1021/bi00521a014. [DOI] [PubMed] [Google Scholar]
  25. Ohta M., Inoue H., Cotticelli M. G., Kastury K., Baffa R., Palazzo J., Siprashvili Z., Mori M., McCue P., Druck T. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996 Feb 23;84(4):587–597. doi: 10.1016/s0092-8674(00)81034-x. [DOI] [PubMed] [Google Scholar]
  26. Pearson J. D., DeWald D. B., Mathews W. R., Mozier N. M., Zürcher-Neely H. A., Heinrikson R. L., Morris M. A., McCubbin W. D., McDonald J. R., Fraser E. D. Amino acid sequence and characterization of a protein inhibitor of protein kinase C. J Biol Chem. 1990 Mar 15;265(8):4583–4591. [PubMed] [Google Scholar]
  27. Ravid K., Rosenthal R. A., Doctrow S. R., Lowenstein J. M. 28 kDa adenosine-binding proteins of brain and other tissues. Biochem J. 1989 Mar 15;258(3):653–661. doi: 10.1042/bj2580653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robinson K., Jones D., Howell S., Soneji Y., Martin S., Aitken A. Expression and characterization of maize ZBP14, a member of a new family of zinc-binding proteins. Biochem J. 1995 Apr 1;307(Pt 1):267–272. doi: 10.1042/bj3070267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubio R., Wiedmeier V. T., Berne R. M. Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol. 1974 Dec;6(6):561–566. doi: 10.1016/0022-2828(74)90036-4. [DOI] [PubMed] [Google Scholar]
  30. Van Belle H. Nucleoside transport inhibition: a therapeutic approach to cardioprotection via adenosine? Cardiovasc Res. 1993 Jan;27(1):68–76. doi: 10.1093/cvr/27.1.68. [DOI] [PubMed] [Google Scholar]
  31. Watson J. A., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria. J Biol Chem. 1970 Nov 25;245(22):5993–6002. [PubMed] [Google Scholar]
  32. Yamada Y., Goto H., Ogasawara N. Purification and properties of adenosine kinase from rat brain. Biochim Biophys Acta. 1980 Dec 4;616(2):199–207. doi: 10.1016/0005-2744(80)90138-2. [DOI] [PubMed] [Google Scholar]
  33. Yamazaki Y., Truong V. L., Lowenstein J. M. 5'-Nucleotidase I from rabbit heart. Biochemistry. 1991 Feb 12;30(6):1503–1509. doi: 10.1021/bi00220a009. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES