Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):479–483. doi: 10.1042/bj3260479

Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains.

K Török 1, K Stauffer 1, W H Evans 1
PMCID: PMC1218694  PMID: 9291121

Abstract

A fluorescent calmodulin derivative, 2-chloro-[4-(epsilon-amino-Lys75)]-[6-(4- diethylaminophenyl)-1,3,5-triazin-4-yl]-calmodulin (TA-calmodulin) [Török and Trentham (1994) Biochemistry 33, 12807-12820], and equilibrium fluorescence methods were used to identify calmodulin-binding domains of connexin subunits of gap junctions. Synthetic peptides corresponding to six extramembrane regions of connexin 32, a major component of rat liver gap junctions, and peptides derived from connexin 43 and 26, were tested. Two cytoplasmically oriented peptides that correspond to an N-terminal 21-amino-acid sequence and a 15-amino-acid sequence at the C-terminal tail of connexin 32 bound TA-calmodulin in a Ca2+-dependent manner. The dissociation constants (Kd) of TA-calmodulin binding to GAP 10 (MNWTGLYTLLSGVNRHSTAIG, residues 1-21) and GAP 8M (ACARRAQRRSNPPSR, residues 216-230) were 27 nM and 1.2 microM respectively at 150 mM ionic strength, 2 mM MgCl2, 100 microM CaCl2, pH 7.0 and 21 degrees C. Both halves of each peptide were required for calmodulin binding. Substitution of Trp3 present in all connexins by Tyr increased Kd for TA-calmodulin by 40-fold. Liver gap junctions (whose connexons contain mainly connexin 32) and recombinant connexons constructed of connexin 26 expressed by baculovirus-infected insect cells exhibited weaker binding of TA-calmodulin with variable Ca2+-dependence. These studies identify two calmodulin-binding amino-acid sequences in connexin 32, and provide independent evidence that calmodulin may function as an intracellular ligand, regulating Ca2+-dependent intercellular communication across gap junctions.

Full Text

The Full Text of this article is available as a PDF (317.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. V., Barrio L. C., Bargiello T. A., Spray D. C., Hertzberg E., Sáez J. C. Gap junctions: new tools, new answers, new questions. Neuron. 1991 Mar;6(3):305–320. doi: 10.1016/0896-6273(91)90241-q. [DOI] [PubMed] [Google Scholar]
  2. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  3. Evans W. H., Carlile G., Rahman S., Török K. Gap junction communication channel: peptides and anti-peptide antibodies as structural probes. Biochem Soc Trans. 1992 Nov;20(4):856–861. doi: 10.1042/bst0200856. [DOI] [PubMed] [Google Scholar]
  4. Goodenough D. A., Goliger J. A., Paul D. L. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502. doi: 10.1146/annurev.bi.65.070196.002355. [DOI] [PubMed] [Google Scholar]
  5. Gorin M. B., Yancey S. B., Cline J., Revel J. P., Horwitz J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell. 1984 Nov;39(1):49–59. doi: 10.1016/0092-8674(84)90190-9. [DOI] [PubMed] [Google Scholar]
  6. Hertzberg E. L. A detergent-independent procedure for the isolation of gap junctions from rat liver. J Biol Chem. 1984 Aug 10;259(15):9936–9943. [PubMed] [Google Scholar]
  7. Kilhoffer M. C., Demaille J. G., Gérard D. Tyrosine fluorescence of ram testis and octopus calmodulins. Effects of calcium, magnesium, and ionic strength. Biochemistry. 1981 Jul 21;20(15):4407–4414. doi: 10.1021/bi00518a027. [DOI] [PubMed] [Google Scholar]
  8. Kumar N. M., Gilula N. B. Molecular biology and genetics of gap junction channels. Semin Cell Biol. 1992 Feb;3(1):3–16. doi: 10.1016/s1043-4682(10)80003-0. [DOI] [PubMed] [Google Scholar]
  9. LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
  10. Lees-Miller J. P., Caveney S. Drugs that block calmoduLin activity inhibit cell-to-cell coupling in the epidermis of Tenebrio molitor. J Membr Biol. 1982;69(3):233–245. doi: 10.1007/BF01870402. [DOI] [PubMed] [Google Scholar]
  11. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  12. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  13. Mehta P. P., Hotz-Wagenblatt A., Rose B., Shalloway D., Loewenstein W. R. Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth. J Membr Biol. 1991 Dec;124(3):207–225. doi: 10.1007/BF01994355. [DOI] [PubMed] [Google Scholar]
  14. Milks L. C., Kumar N. M., Houghten R., Unwin N., Gilula N. B. Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J. 1988 Oct;7(10):2967–2975. doi: 10.1002/j.1460-2075.1988.tb03159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Milos M., Schaer J. J., Comte M., Cox J. A. Microcalorimetric investigation of the interaction of calmodulin with seminalplasmin and myosin light chain kinase. J Biol Chem. 1988 Jul 5;263(19):9218–9222. [PubMed] [Google Scholar]
  16. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  17. Peracchia C. Communicating junctions and calmodulin: inhibition of electrical uncoupling in Xenopus embryo by calmidazolium. J Membr Biol. 1984;81(1):49–58. doi: 10.1007/BF01868809. [DOI] [PubMed] [Google Scholar]
  18. Peracchia C., Girsch S. J. Calmodulin site at the C-terminus of the putative lens gap junction protein MIP26. Lens Eye Toxic Res. 1989;6(4):613–621. [PubMed] [Google Scholar]
  19. Peracchia C., Wang X., Li L., Peracchia L. L. Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes. Pflugers Arch. 1996 Jan;431(3):379–387. doi: 10.1007/BF02207275. [DOI] [PubMed] [Google Scholar]
  20. Rahman S., Carlile G., Evans W. H. Assembly of hepatic gap junctions. Topography and distribution of connexin 32 in intracellular and plasma membranes determined using sequence-specific antibodies. J Biol Chem. 1993 Jan 15;268(2):1260–1265. [PubMed] [Google Scholar]
  21. Rahman S., Evans W. H. Topography of connexin32 in rat liver gap junctions. Evidence for an intramolecular disulphide linkage connecting the two extracellular peptide loops. J Cell Sci. 1991 Nov;100(Pt 3):567–578. doi: 10.1242/jcs.100.3.567. [DOI] [PubMed] [Google Scholar]
  22. Rasmussen C. D., Means A. R. Calmodulin, cell growth and gene expression. Trends Neurosci. 1989 Nov;12(11):433–438. doi: 10.1016/0166-2236(89)90092-1. [DOI] [PubMed] [Google Scholar]
  23. Reddy G. P., Reed W. C., Sheehan E., Sacks D. B. Calmodulin-specific monoclonal antibodies inhibit DNA replication in mammalian cells. Biochemistry. 1992 Nov 3;31(43):10426–10430. doi: 10.1021/bi00158a002. [DOI] [PubMed] [Google Scholar]
  24. Sasaki Y., Shiba Y., Kanno Y. Suppression of intercellular communication in acinar cells from rat submandibular gland by cholinergic and adrenergic agonists. Jpn J Physiol. 1988;38(4):531–543. doi: 10.2170/jjphysiol.38.531. [DOI] [PubMed] [Google Scholar]
  25. Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
  26. Stauffer K. A., Kumar N. M., Gilula N. B., Unwin N. Isolation and purification of gap junction channels. J Cell Biol. 1991 Oct;115(1):141–150. doi: 10.1083/jcb.115.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Todd D. J., Hughes A. E., Ennis K. T., Ward A. J., Burrows D., Nevin N. C. Identification of a single base pair deletion (40 del G) in exon 1 of the ferrochelatase gene in patients with erythropoietic protoporphyria. Hum Mol Genet. 1993 Sep;2(9):1495–1496. doi: 10.1093/hmg/2.9.1495. [DOI] [PubMed] [Google Scholar]
  28. Török K., Lane A. N., Martin S. R., Janot J. M., Bayley P. M. Effects of calcium binding on the internal dynamic properties of bovine brain calmodulin, studied by NMR and optical spectroscopy. Biochemistry. 1992 Apr 7;31(13):3452–3462. doi: 10.1021/bi00128a020. [DOI] [PubMed] [Google Scholar]
  29. Török K., Trentham D. R. Mechanism of 2-chloro-(epsilon-amino-Lys75)-[6-[4-(N,N- diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin interactions with smooth muscle myosin light chain kinase and derived peptides. Biochemistry. 1994 Nov 1;33(43):12807–12820. doi: 10.1021/bi00209a012. [DOI] [PubMed] [Google Scholar]
  30. Unwin N. The structure of ion channels in membranes of excitable cells. Neuron. 1989 Dec;3(6):665–676. doi: 10.1016/0896-6273(89)90235-3. [DOI] [PubMed] [Google Scholar]
  31. Unwin P. N., Ennis P. D. Two configurations of a channel-forming membrane protein. Nature. 1984 Feb 16;307(5952):609–613. doi: 10.1038/307609a0. [DOI] [PubMed] [Google Scholar]
  32. Van Eldik L. J., Hertzberg E. L., Berdan R. C., Gilula N. B. Interaction of calmodulin and other calcium-modulated proteins with mammalian and arthropod junctional membrane proteins. Biochem Biophys Res Commun. 1985 Jan 31;126(2):825–832. doi: 10.1016/0006-291x(85)90259-1. [DOI] [PubMed] [Google Scholar]
  33. Welsh M. J., Aster J. C., Ireland M., Alcala J., Maisel H. Calmodulin binds to chick lens gap junction protein in a calcium-independent manner. Science. 1982 May 7;216(4546):642–644. doi: 10.1126/science.6280283. [DOI] [PubMed] [Google Scholar]
  34. Yancey S. B., John S. A., Lal R., Austin B. J., Revel J. P. The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains. J Cell Biol. 1989 Jun;108(6):2241–2254. doi: 10.1083/jcb.108.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yeager M., Gilula N. B. Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol. 1992 Feb 20;223(4):929–948. doi: 10.1016/0022-2836(92)90253-g. [DOI] [PubMed] [Google Scholar]
  36. Zimmer D. B., Green C. R., Evans W. H., Gilula N. B. Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures. J Biol Chem. 1987 Jun 5;262(16):7751–7763. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES