Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):507–514. doi: 10.1042/bj3260507

Inhibition of intracellular proteolytic processing of soluble proproteins by an engineered alpha 2-macroglobulin containing a furin recognition sequence in the bait region.

L Van Rompaey 1, T Ayoubi 1, W Van De Ven 1, P Marynen 1
PMCID: PMC1218698  PMID: 9291125

Abstract

The bait region of the general protease inhibitor alpha 2-macroglobulin (alpha 2M) was mutated by introducing a recognition sequence of furin. This did not interfere with folding, S-ester formation or tetramerization of the mutant recombinant alpha 2M (r alpha 2M). Mutant r alpha 2M inhibited furin in vitro, by a similar mechanism to that used by plasma alpha 2M to inhibit high-molecular-mass proteases. The mutant alpha 2M was intracellularly active in COS-1 cells in inhibiting the endogenous processing of the soluble substrates for furin (von Willebrand factor, transforming growth factor beta1 and a soluble form of the envelope glycoprotein gp160 from HIV-1) but not the membrane-bound form of gp160. The intracellular activity of mutant alpha 2M strongly indicated that alpha 2M attains its native conformation, and thus that the unusual internal S-ester is formed, before alpha 2M passes through the cleavage compartment(s). Our results show for the first time that modulation of the bait region of alpha 2M allows the creation of an inhibitor against membrane-bound proteases. It can be expected that the use of alpha 2M-bait mutants will become important as a technique for the study of various proteolytic processes and for the identification of the proteases involved.

Full Text

The Full Text of this article is available as a PDF (482.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen G. R., Koch T. J., Dolmer K., Sottrup-Jensen L., Nyborg J. Low resolution X-ray structure of human methylamine-treated alpha 2-macroglobulin. J Biol Chem. 1995 Oct 20;270(42):25133–25141. doi: 10.1074/jbc.270.42.25133. [DOI] [PubMed] [Google Scholar]
  2. Anderson E. D., Thomas L., Hayflick J. S., Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem. 1993 Nov 25;268(33):24887–24891. [PubMed] [Google Scholar]
  3. Arakawa H., Muto Y., Arata Y., Ikai A. Proton nuclear magnetic resonance study of human plasma alpha-2-macroglobulin. Biochemistry. 1986 Nov 4;25(22):6785–6789. doi: 10.1021/bi00370a009. [DOI] [PubMed] [Google Scholar]
  4. Ayoubi T. A., Meulemans S. M., Roebroek A. J., Van de Ven W. J. Production of recombinant proteins in Chinese hamster ovary cells overexpressing the subtilisin-like proprotein converting enzyme furin. Mol Biol Rep. 1996;23(2):87–95. doi: 10.1007/BF00424434. [DOI] [PubMed] [Google Scholar]
  5. Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boisset N., Pochon F., Chwetzoff S., Barray M., Delain E., Lamy J. Electron microscopy of alpha 2-macroglobulin with a thiol ester bound ligand. J Struct Biol. 1992 May-Jun;108(3):221–226. doi: 10.1016/1047-8477(92)90022-3. [DOI] [PubMed] [Google Scholar]
  8. Creemers J. W., Siezen R. J., Roebroek A. J., Ayoubi T. A., Huylebroeck D., Van de Ven W. J. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem. 1993 Oct 15;268(29):21826–21834. [PubMed] [Google Scholar]
  9. Creemers J. W., Vey M., Schäfer W., Ayoubi T. A., Roebroek A. J., Klenk H. D., Garten W., Van de Ven W. J. Endoproteolytic cleavage of its propeptide is a prerequisite for efficient transport of furin out of the endoplasmic reticulum. J Biol Chem. 1995 Feb 10;270(6):2695–2702. doi: 10.1074/jbc.270.6.2695. [DOI] [PubMed] [Google Scholar]
  10. Decroly E., Vandenbranden M., Ruysschaert J. M., Cogniaux J., Jacob G. S., Howard S. C., Marshall G., Kompelli A., Basak A., Jean F. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J Biol Chem. 1994 Apr 22;269(16):12240–12247. [PubMed] [Google Scholar]
  11. Decroly E., Wouters S., Di Bello C., Lazure C., Ruysschaert J. M., Seidah N. G. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem. 1996 Nov 29;271(48):30442–30450. doi: 10.1074/jbc.271.48.30442. [DOI] [PubMed] [Google Scholar]
  12. Derynck R., Jarrett J. A., Chen E. Y., Eaton D. H., Bell J. R., Assoian R. K., Roberts A. B., Sporn M. B., Goeddel D. V. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985 Aug 22;316(6030):701–705. doi: 10.1038/316701a0. [DOI] [PubMed] [Google Scholar]
  13. Dubois C. M., Laprise M. H., Blanchette F., Gentry L. E., Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 1995 May 5;270(18):10618–10624. doi: 10.1074/jbc.270.18.10618. [DOI] [PubMed] [Google Scholar]
  14. Gettins P. G., Hahn K. H., Crews B. C. Alpha 2-macroglobulin bait region variants. A role for the bait region in tetramer formation. J Biol Chem. 1995 Jun 9;270(23):14160–14167. doi: 10.1074/jbc.270.23.14160. [DOI] [PubMed] [Google Scholar]
  15. Gettins P., Beechem J. M., Crews B. C., Cunningham L. W. Separation and localization of the four cysteine-949 residues in human alpha 2-macroglobulin using fluorescence energy transfer. Biochemistry. 1990 Aug 21;29(33):7747–7753. doi: 10.1021/bi00485a025. [DOI] [PubMed] [Google Scholar]
  16. Gettins P., Beth A. H., Cunningham L. W. Proximity of thiol esters and bait region in human alpha 2-macroglobulin: paramagnetic mapping. Biochemistry. 1988 Apr 19;27(8):2905–2911. doi: 10.1021/bi00408a036. [DOI] [PubMed] [Google Scholar]
  17. Gettins P., Cunningham L. W. Identification of 1H resonances from the bait region of human alpha 2-macroglobulin and effects of proteases and methylamine. Biochemistry. 1986 Sep 9;25(18):5011–5017. doi: 10.1021/bi00366a007. [DOI] [PubMed] [Google Scholar]
  18. Gu M., Rappaport J., Leppla S. H. Furin is important but not essential for the proteolytic maturation of gp160 of HIV-1. FEBS Lett. 1995 May 22;365(1):95–97. doi: 10.1016/0014-5793(95)00447-h. [DOI] [PubMed] [Google Scholar]
  19. Hallenberger S., Bosch V., Angliker H., Shaw E., Klenk H. D., Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature. 1992 Nov 26;360(6402):358–361. doi: 10.1038/360358a0. [DOI] [PubMed] [Google Scholar]
  20. Heumann D., Vischer T. L. Immunomodulation by alpha 2-macroglobulin and alpha 2-macroglobulin-proteinase complexes: the effect on the human T lymphocyte response. Eur J Immunol. 1988 May;18(5):755–760. doi: 10.1002/eji.1830180515. [DOI] [PubMed] [Google Scholar]
  21. Hook V. Y., Azaryan A. V., Hwang S. R., Tezapsidis N. Proteases and the emerging role of protease inhibitors in prohormone processing. FASEB J. 1994 Dec;8(15):1269–1278. doi: 10.1096/fasebj.8.15.8001739. [DOI] [PubMed] [Google Scholar]
  22. Jacobsen L., Sottrup-Jensen L. Localization of epsilon-lysyl-gamma-glutamyl cross-links in alpha 2-macroglobulin-plasmin complex. Biochemistry. 1993 Jan 12;32(1):120–126. doi: 10.1021/bi00052a017. [DOI] [PubMed] [Google Scholar]
  23. Jones B. G., Thomas L., Molloy S. S., Thulin C. D., Fry M. D., Walsh K. A., Thomas G. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J. 1995 Dec 1;14(23):5869–5883. doi: 10.1002/j.1460-2075.1995.tb00275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kamoshita K., Shiota M., Sasaki M., Koga Y., Okumura Y., Kido H. Calcium requirement and inhibitor spectrum for intracellular HIV type 1 gp160 processing in cultured HeLa cells and CD4+ lymphocytes: similarity to those of viral envelope glycoprotein maturase. J Biochem. 1995 Jun;117(6):1244–1253. doi: 10.1093/oxfordjournals.jbchem.a124851. [DOI] [PubMed] [Google Scholar]
  25. Karp D. R. Post-translational modification of the fourth component of complement. Effect of tunicamycin and amino acid analogs on the formation of the internal thiol ester and disulfide bonds. J Biol Chem. 1983 Dec 10;258(23):14490–14495. [PubMed] [Google Scholar]
  26. Kido H., Kamoshita K., Fukutomi A., Katunuma N. Processing protease for gp160 human immunodeficiency virus type I envelope glycoprotein precursor in human T4+ lymphocytes. Purification and characterization. J Biol Chem. 1993 Jun 25;268(18):13406–13413. [PubMed] [Google Scholar]
  27. Kimura T., Nishikawa M., Fujisawa J. Uncleaved env gp160 of human immunodeficiency virus type 1 is degraded within the Golgi apparatus but not lysosomes in COS-1 cells. FEBS Lett. 1996 Jul 15;390(1):15–20. doi: 10.1016/0014-5793(96)00614-x. [DOI] [PubMed] [Google Scholar]
  28. Marynen P., Van Leuven F., Cassiman J. J., Van den Berghe H. A monoclonal antibody to a neo-antigen on alpha 2-macroglobulin complexes inhibits receptor-mediated endocytosis. J Immunol. 1981 Nov;127(5):1782–1786. [PubMed] [Google Scholar]
  29. Mellman I., Simons K. The Golgi complex: in vitro veritas? Cell. 1992 Mar 6;68(5):829–840. doi: 10.1016/0092-8674(92)90027-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morikawa Y., Barsov E., Jones I. Legitimate and illegitimate cleavage of human immunodeficiency virus glycoproteins by furin. J Virol. 1993 Jun;67(6):3601–3604. doi: 10.1128/jvi.67.6.3601-3604.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morsy J., Garten W., Rott R. Activation of an influenza virus A/turkey/Oregon/71 HA insertion variant by the subtilisin-like endoprotease furin. Virology. 1994 Aug 1;202(2):988–991. doi: 10.1006/viro.1994.1424. [DOI] [PubMed] [Google Scholar]
  33. Mortensen S. B., Sottrup-Jensen L., Hansen H. F., Petersen T. E., Magnusson S. Primary and secondary cleavage sites in the bait region of alpha 2-macroglobulin. FEBS Lett. 1981 Dec 7;135(2):295–300. doi: 10.1016/0014-5793(81)80804-6. [DOI] [PubMed] [Google Scholar]
  34. Moulard M., Achstetter T., Ikehara Y., Bahraoui E. T4-lymphocyte endoprotease responsible for the proteolytic processing of HIV-1 gp160, like Kex2p endoprotease, is a calcium-dependent enzyme. Biochimie. 1994;76(3-4):251–256. doi: 10.1016/0300-9084(94)90154-6. [DOI] [PubMed] [Google Scholar]
  35. Moulard M., Montagnier L., Bahraoui E. Effects of calcium ions on proteolytic processing of HIV-1 gp160 precursor and on cell fusion. FEBS Lett. 1994 Feb 7;338(3):281–284. doi: 10.1016/0014-5793(94)80284-x. [DOI] [PubMed] [Google Scholar]
  36. Ohnishi Y., Shioda T., Nakayama K., Iwata S., Gotoh B., Hamaguchi M., Nagai Y. A furin-defective cell line is able to process correctly the gp160 of human immunodeficiency virus type 1. J Virol. 1994 Jun;68(6):4075–4079. doi: 10.1128/jvi.68.6.4075-4079.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Overbergh L., Hilliker C., Lorent K., Van Leuven F., Van den Berghe H. Identification of four genes coding for isoforms of murinoglobulin, the monomeric mouse alpha 2-macroglobulin: characterization of the exons coding for the bait region. Genomics. 1994 Aug;22(3):530–539. doi: 10.1006/geno.1994.1426. [DOI] [PubMed] [Google Scholar]
  38. Pochon F. Some consequences of the covalent and non-covalent binding modes of plasmin with alpha 2-macroglobulin. Biochim Biophys Acta. 1987 Sep 2;915(1):37–45. doi: 10.1016/0167-4838(87)90122-1. [DOI] [PubMed] [Google Scholar]
  39. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  40. Sjöberg M., Esnard F., Fries E. Intracellular modifications of rat alpha 1 inhibitor3. Formation of disulphides, internal thiolester and sulphation. Eur J Biochem. 1991 Apr 10;197(1):61–66. doi: 10.1111/j.1432-1033.1991.tb15882.x. [DOI] [PubMed] [Google Scholar]
  41. Sottrup-Jensen L., Hansen H. F., Pedersen H. S., Kristensen L. Localization of epsilon-lysyl-gamma-glutamyl cross-links in five human alpha 2-macroglobulin-proteinase complexes. Nature of the high molecular weight cross-linked products. J Biol Chem. 1990 Oct 15;265(29):17727–17737. [PubMed] [Google Scholar]
  42. Sottrup-Jensen L., Petersen T. E., Magnusson S. A thiol-ester in alpha 2-macroglobulin cleaved during proteinase complex formation. FEBS Lett. 1980 Dec 1;121(2):275–279. doi: 10.1016/0014-5793(80)80361-9. [DOI] [PubMed] [Google Scholar]
  43. Sottrup-Jensen L., Sand O., Kristensen L., Fey G. H. The alpha-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian alpha-macroglobulins. J Biol Chem. 1989 Sep 25;264(27):15781–15789. [PubMed] [Google Scholar]
  44. Steiner J. P., Bhattacharya P., Strickland D. K. Thrombin-induced conformational changes of human alpha 2-macroglobulin: evidence for two functional domains. Biochemistry. 1985 Jun 4;24(12):2993–3001. doi: 10.1021/bi00333a028. [DOI] [PubMed] [Google Scholar]
  45. Steiner J. P., Migliorini M., Strickland D. K. Characterization of the reaction of plasmin with alpha 2-macroglobulin: effect of antifibrinolytic agents. Biochemistry. 1987 Dec 15;26(25):8487–8495. doi: 10.1021/bi00399a068. [DOI] [PubMed] [Google Scholar]
  46. Straight D. L., McKee P. A. Characterization of thrombin binding to alpha 2-macroglobulin. J Biol Chem. 1984 Jan 25;259(2):1272–1278. [PubMed] [Google Scholar]
  47. Takahashi S., Nakagawa T., Banno T., Watanabe T., Murakami K., Nakayama K. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem. 1995 Nov 24;270(47):28397–28401. doi: 10.1074/jbc.270.47.28397. [DOI] [PubMed] [Google Scholar]
  48. Takahashi S., Nakagawa T., Kasai K., Banno T., Duguay S. J., Van de Ven W. J., Murakami K., Nakayama K. A second mutant allele of furin in the processing-incompetent cell line, LoVo. Evidence for involvement of the homo B domain in autocatalytic activation. J Biol Chem. 1995 Nov 3;270(44):26565–26569. doi: 10.1074/jbc.270.44.26565. [DOI] [PubMed] [Google Scholar]
  49. Tsuneoka M., Nakayama K., Hatsuzawa K., Komada M., Kitamura N., Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem. 1993 Dec 15;268(35):26461–26465. [PubMed] [Google Scholar]
  50. Van Rompaey L., Proost P., Van den Berghe H., Marynen P. Design of a new protease inhibitor by the manipulation of the bait region of alpha 2-macroglobulin: inhibition of the tobacco etch virus protease by mutant alpha 2-macroglobulin. Biochem J. 1995 Nov 15;312(Pt 1):191–195. doi: 10.1042/bj3120191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Van Rompaey L., Van den Berghe H., Marynen P. Synthesis of a Cys949Tyr alpha 2-macroglobulin thiol ester mutant: co-transfection with wild-type alpha 2-macroglobulin in an episomal expression system. Biochem J. 1995 Nov 15;312(Pt 1):183–190. doi: 10.1042/bj3120183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Van de Ven W. J., Creemers J. W., Roebroek A. J. Furin: the prototype mammalian subtilisin-like proprotein-processing enzyme. Endoproteolytic cleavage at paired basic residues of proproteins of the eukaryotic secretory pathway. Enzyme. 1991;45(5-6):257–270. doi: 10.1159/000468900. [DOI] [PubMed] [Google Scholar]
  53. Van de Ven W. J., Roebroek A. J., Van Duijnhoven H. L. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncog. 1993;4(2):115–136. [PubMed] [Google Scholar]
  54. Verweij C. L., Diergaarde P. J., Hart M., Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986 Aug;5(8):1839–1847. doi: 10.1002/j.1460-2075.1986.tb04435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vey M., Schäfer W., Berghöfer S., Klenk H. D., Garten W. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J Cell Biol. 1994 Dec;127(6 Pt 2):1829–1842. doi: 10.1083/jcb.127.6.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Vollenweider F., Benjannet S., Decroly E., Savaria D., Lazure C., Thomas G., Chrétien M., Seidah N. G. Comparative cellular processing of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp160 by the mammalian subtilisin/kexin-like convertases. Biochem J. 1996 Mar 1;314(Pt 2):521–532. doi: 10.1042/bj3140521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Voorhees P., Deignan E., van Donselaar E., Humphrey J., Marks M. S., Peters P. J., Bonifacino J. S. An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J. 1995 Oct 16;14(20):4961–4975. doi: 10.1002/j.1460-2075.1995.tb00179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Webb D. J., LaMarre J., Gonias S. L. Effect of human alpha-thrombin on the transforming growth factor-beta 1-binding activity of human alpha 2-macroglobulin. Semin Thromb Hemost. 1992;18(3):305–310. doi: 10.1055/s-2007-1002569. [DOI] [PubMed] [Google Scholar]
  59. Weiss C. D., White J. M. Characterization of stable Chinese hamster ovary cells expressing wild-type, secreted, and glycosylphosphatidylinositol-anchored human immunodeficiency virus type 1 envelope glycoprotein. J Virol. 1993 Dec;67(12):7060–7066. doi: 10.1128/jvi.67.12.7060-7066.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Willey R. L., Bonifacino J. S., Potts B. J., Martin M. A., Klausner R. D. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9580–9584. doi: 10.1073/pnas.85.24.9580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wise R. J., Barr P. J., Wong P. A., Kiefer M. C., Brake A. J., Kaufman R. J. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9378–9382. doi: 10.1073/pnas.87.23.9378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wollenberg G. K., LaMarre J., Rosendal S., Gonias S. L., Hayes M. A. Binding of tumor necrosis factor alpha to activated forms of human plasma alpha 2 macroglobulin. Am J Pathol. 1991 Feb;138(2):265–272. [PMC free article] [PubMed] [Google Scholar]
  63. van Duijnhoven H. L., Creemers J. W., Kranenborg M. G., Timmer E. D., Groeneveld A., van den Ouweland A. M., Roebroek A. J., van de Ven W. J. Development and characterization of a panel of monoclonal antibodies against the novel subtilisin-like proprotein processing enzyme furin. Hybridoma. 1992 Feb;11(1):71–86. doi: 10.1089/hyb.1992.11.71. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES