Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):521–529. doi: 10.1042/bj3260521

Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type.

D K Mahnke-Zizelman 1, J D'cunha 1, J M Wojnar 1, M A Brogley 1, R L Sabina 1
PMCID: PMC1218700  PMID: 9291127

Abstract

AMP deaminase (AMPD) is characterized by a multigene family in rodents and man. Highly conserved rat and human AMPD1 and AMPD2 genes produce protein products that exhibit cross-species immunoreactivities (AMPD1, rat isoform A and human isoform M; AMPD2, rat isoform B and human isoform L). A third gene, AMPD3, has been described in humans, but antisera raised against its purified protein product (isoform E) reportedly does not cross-react with a third activity purified from rat tissues (isoform C). This study was designed to address this latter issue by cloning, sequencing and expressing rat AMPD3 cDNA species. Similarly to the human AMPD3 gene, the rat AMPD3 gene produces multiple transcripts that differ at or near their 5' ends. The boundary at which these alternative sequences diverge is precisely conserved in both species. Across the region that is common to all rat and human AMPD3 cDNA species, nucleotide and predicted amino acid sequences are 89% and 93% identical respectively, although the rat open reading frame is lacking two separate in-frame codons in the 5' end. Extreme 5' regions between the two species are entirely divergent, and one alternative rat sequence is predicted to confer at least 36 additional N-terminal residues to its encoded AMPD3 polypeptide. A comparison of 3' untranslated regions indicates that the rat sequence is 250 bp longer and contains multiple consensus polyadenylation signals. Examination of relative rat AMPD3 gene expression shows (1) variable patterns of alternative mRNA abundance across adult tissues, (2) developmental regulation in skeletal muscle and liver, and (3) greater mRNA abundance in adult red (soleus) than in mixed (plantaris) and white (outer gastrocnemius) skeletal muscle. Finally, baculoviral expression of rat and human AMPD3 proteins produces enzymes that are chromatographically and kinetically similar. Moreover, both recombinant activities immunoreact with anti-C and anti-E serum. These combined results demonstrate that rat isoform C and human isoform E are homologous cross-species AMPD3 proteins.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. B., Phelps R. O. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984 Nov;171(3):259–272. doi: 10.1002/aja.1001710303. [DOI] [PubMed] [Google Scholar]
  2. Bausch-Jurken M. T., Mahnke-Zizelman D. K., Morisaki T., Sabina R. L. Molecular cloning of AMP deaminase isoform L. Sequence and bacterial expression of human AMPD2 cDNA. J Biol Chem. 1992 Nov 5;267(31):22407–22413. [PubMed] [Google Scholar]
  3. Bausch-Jurken M. T., Sabina R. L. Divergent N-terminal regions in AMP deaminase and isoform-specific catalytic properties of the enzyme. Arch Biochem Biophys. 1995 Aug 20;321(2):372–380. doi: 10.1006/abbi.1995.1407. [DOI] [PubMed] [Google Scholar]
  4. Chang Z. Y., Nygaard P., Chinault A. C., Kellems R. E. Deduced amino acid sequence of Escherichia coli adenosine deaminase reveals evolutionarily conserved amino acid residues: implications for catalytic function. Biochemistry. 1991 Feb 26;30(8):2273–2280. doi: 10.1021/bi00222a033. [DOI] [PubMed] [Google Scholar]
  5. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  6. Mahnke-Zizelman D. K., Eddy R., Shows T. B., Sabina R. L. Characterization of the human AMPD3 gene reveals that 5' exon useage is subject to transcriptional control by three tandem promoters and alternative splicing. Biochim Biophys Acta. 1996 Apr 10;1306(1):75–92. doi: 10.1016/0167-4781(95)00231-6. [DOI] [PubMed] [Google Scholar]
  7. Mahnke-Zizelman D. K., Sabina R. L. Cloning of human AMP deaminase isoform E cDNAs. Evidence for a third AMPD gene exhibiting alternatively spliced 5'-exons. J Biol Chem. 1992 Oct 15;267(29):20866–20877. [PubMed] [Google Scholar]
  8. Mahnke-Zizelman D. K., van den Bergh F., Bausch-Jurken M. T., Eddy R., Sait S., Shows T. B., Sabina R. L. Cloning, sequence and characterization of the human AMPD2 gene: evidence for transcriptional regulation by two closely spaced promoters. Biochim Biophys Acta. 1996 Aug 14;1308(2):122–132. doi: 10.1016/0167-4781(96)00089-9. [DOI] [PubMed] [Google Scholar]
  9. Marquetant R., Desai N. M., Sabina R. L., Holmes E. W. Evidence for sequential expression of multiple AMP deaminase isoforms during skeletal muscle development. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2345–2349. doi: 10.1073/pnas.84.8.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mineo I., Clarke P. R., Sabina R. L., Holmes E. W. A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5' splice donor site not present in the primary transcript of AMPD1. Mol Cell Biol. 1990 Oct;10(10):5271–5278. doi: 10.1128/mcb.10.10.5271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morisaki H., Morisaki T., Newby L. K., Holmes E. W. Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect. J Clin Invest. 1993 May;91(5):2275–2280. doi: 10.1172/JCI116455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morisaki T., Gross M., Morisaki H., Pongratz D., Zöllner N., Holmes E. W. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6457–6461. doi: 10.1073/pnas.89.14.6457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morisaki T., Sabina R. L., Holmes E. W. Adenylate deaminase. A multigene family in humans and rats. J Biol Chem. 1990 Jul 15;265(20):11482–11486. [PubMed] [Google Scholar]
  14. Ogasawara N., Goto H., Watanabe T. Isozymes of rat AMP deaminase. Biochim Biophys Acta. 1975 Oct 22;403(2):530–537. doi: 10.1016/0005-2744(75)90081-9. [DOI] [PubMed] [Google Scholar]
  15. Ogasawara N., Goto H., Yamada Y., Nishigaki I., Itoh T., Hasegawa I. Complete deficiency of AMP deaminase in human erythrocytes. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1344–1349. doi: 10.1016/0006-291x(84)91239-7. [DOI] [PubMed] [Google Scholar]
  16. Ogasawara N., Goto H., Yamada Y., Watanabe T., Asano T. AMP deaminase isozymes in human tissues. Biochim Biophys Acta. 1982 Feb 2;714(2):298–306. doi: 10.1016/0304-4165(82)90337-3. [DOI] [PubMed] [Google Scholar]
  17. Ogasawara N., Goto H., Yamada Y., Watanabe T. Distribution of AMP deaminase isozymes in various human blood cells. Int J Biochem. 1984;16(3):269–273. doi: 10.1016/0020-711x(84)90099-5. [DOI] [PubMed] [Google Scholar]
  18. Ogasawara N., Goto H., Yamada Y., Watanabe T. Distribution of AMP-deaminase isozymes in rat tissues. Eur J Biochem. 1978 Jun 15;87(2):297–304. doi: 10.1111/j.1432-1033.1978.tb12378.x. [DOI] [PubMed] [Google Scholar]
  19. Raggi A., Bergamini C., Ronca G. Isozymes of AMP deaminase in red and white skeletal muscles. FEBS Lett. 1975 Oct 15;58(1):19–23. doi: 10.1016/0014-5793(75)80216-x. [DOI] [PubMed] [Google Scholar]
  20. Sabina R. L., Fishbein W. N., Pezeshkpour G., Clarke P. R., Holmes E. W. Molecular analysis of the myoadenylate deaminase deficiencies. Neurology. 1992 Jan;42(1):170–179. doi: 10.1212/wnl.42.1.170. [DOI] [PubMed] [Google Scholar]
  21. Sabina R. L., Marquetant R., Desai N. M., Kaletha K., Holmes E. W. Cloning and sequence of rat myoadenylate deaminase cDNA. Evidence for tissue-specific and developmental regulation. J Biol Chem. 1987 Sep 15;262(26):12397–12400. [PubMed] [Google Scholar]
  22. Sabina R. L., Morisaki T., Clarke P., Eddy R., Shows T. B., Morton C. C., Holmes E. W. Characterization of the human and rat myoadenylate deaminase genes. J Biol Chem. 1990 Jun 5;265(16):9423–9433. [PubMed] [Google Scholar]
  23. Sabina R. L., Ogasawara N., Holmes E. W. Expression of three stage-specific transcripts of AMP deaminase during myogenesis. Mol Cell Biol. 1989 May;9(5):2244–2246. doi: 10.1128/mcb.9.5.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van den Bergh F., Sabina R. L. Characterization of human AMP deaminase 2 (AMPD2) gene expression reveals alternative transcripts encoding variable N-terminal extensions of isoform L. Biochem J. 1995 Dec 1;312(Pt 2):401–410. doi: 10.1042/bj3120401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Kuppevelt T. H., Veerkamp J. H., Fishbein W. N., Ogasawara N., Sabina R. L. Immunolocalization of AMP-deaminase isozymes in human skeletal muscle and cultured muscle cells: concentration of isoform M at the neuromuscular junction. J Histochem Cytochem. 1994 Jul;42(7):861–868. doi: 10.1177/42.7.8014469. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES