Abstract
U46619, a thromboxane A2 analogue, and basic fibroblast growth factor (FGF-2) both induced the expression of the inducible cyclo-oxygenase (Cox)-2 in porcine aortic smooth-muscle cells. This induction was dose-dependent (submaximal at 300 nM for U46619 and 1 ng/ml for FGF-2) and time-dependent, with similar intensity and maximal expression at 2 h. Under these conditions, both inducers stimulated rapid activation of extracellular signal-regulated kinase (ERK2) at 5-10 min, a transient and lower intensity being induced by U46619 whereas that induced by FGF-2 was sustained (>1 h). PD98059, an inhibitor of the ERK pathway, inhibited the expression of Cox-2. In contrast, activation of Jun-N-terminal kinase (JNK1) was sustained with U46619 but poorly induced by FGF-2. Cox-2 expression induced by U46619 or FGF-2 was similarly reduced by prostaglandin (PGE2), forskolin or dibutyryl-cAMP, suggesting a regulatory effect of adenylate cyclase on Cox-2 expression. However, activation of ERK2 by FGF-2 was not affected by PGE2 whereas that of JNK1 by U46619 was inhibited, suggesting that inhibition of COX-2 expression by cAMP may be downstream of ERK2. The effects of PGE2 and forskolin on Cox-2 and phosphorylation of JNK1 were reversed with the protein kinase A inhibitor H89. In addition, endogenous PGE2 down-regulated the expression of Cox-2 by the two inducers, as stimulation of the cells in the presence of different Cox inhibitors increased the expression of the protein. Overall, these results suggest that exogenous and endogenous PGE2 exert negative inhibitory effects on Cox-2 expression mediated by stimulation of protein kinase A.
Full Text
The Full Text of this article is available as a PDF (344.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Takeuchi K., Takahashi N., Tsutsumi E., Taniyama Y., Abe K. Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization. J Clin Invest. 1995 Aug;96(2):657–664. doi: 10.1172/JCI118108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cano E., Mahadevan L. C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 1995 Mar;20(3):117–122. doi: 10.1016/s0968-0004(00)88978-1. [DOI] [PubMed] [Google Scholar]
- Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
- Coleman R. A., Smith W. L., Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev. 1994 Jun;46(2):205–229. [PubMed] [Google Scholar]
- Craven P. A., Studer R. K., DeRubertis F. R. Thromboxane/prostaglandin endoperoxide-induced hypertrophy of rat vascular smooth muscle cells is signaled by protein kinase C-dependent increases in transforming growth factor-beta. Hypertension. 1996 Aug;28(2):169–176. doi: 10.1161/01.hyp.28.2.169. [DOI] [PubMed] [Google Scholar]
- Créminon C., Habib A., Maclouf J., Pradelles P., Grassi J., Frobert Y. Differential measurement of constitutive (COX-1) and inducible (COX-2) cyclooxygenase expression in human umbilical vein endothelial cells using specific immunometric enzyme immunoassays. Biochim Biophys Acta. 1995 Feb 9;1254(3):341–348. doi: 10.1016/0005-2760(94)00197-7. [DOI] [PubMed] [Google Scholar]
- FitzGerald G. A. Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol. 1991 Sep 3;68(7):11B–15B. doi: 10.1016/0002-9149(91)90379-y. [DOI] [PubMed] [Google Scholar]
- Habib A., Créminon C., Frobert Y., Grassi J., Pradelles P., Maclouf J. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J Biol Chem. 1993 Nov 5;268(31):23448–23454. [PubMed] [Google Scholar]
- Hsueh Y. P., Lai M. Z. c-Jun N-terminal kinase but not mitogen-activated protein kinase is sensitive to cAMP inhibition in T lymphocytes. J Biol Chem. 1995 Jul 28;270(30):18094–18098. doi: 10.1074/jbc.270.30.18094. [DOI] [PubMed] [Google Scholar]
- Hwang D., Fischer N. H., Jang B. C., Tak H., Kim J. K., Lee W. Inhibition of the expression of inducible cyclooxygenase and proinflammatory cytokines by sesquiterpene lactones in macrophages correlates with the inhibition of MAP kinases. Biochem Biophys Res Commun. 1996 Sep 24;226(3):810–818. doi: 10.1006/bbrc.1996.1433. [DOI] [PubMed] [Google Scholar]
- Inoue H., Nanayama T., Hara S., Yokoyama C., Tanabe T. The cyclic AMP response element plays an essential role in the expression of the human prostaglandin-endoperoxide synthase 2 gene in differentiated U937 monocytic cells. FEBS Lett. 1994 Aug 15;350(1):51–54. doi: 10.1016/0014-5793(94)00731-4. [DOI] [PubMed] [Google Scholar]
- Inoue H., Yokoyama C., Hara S., Tone Y., Tanabe T. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J Biol Chem. 1995 Oct 20;270(42):24965–24971. doi: 10.1074/jbc.270.42.24965. [DOI] [PubMed] [Google Scholar]
- Jones D. A., Benjamin C. W., Linseman D. A. Activation of thromboxane and prostacyclin receptors elicits opposing effects on vascular smooth muscle cell growth and mitogen-activated protein kinase signaling cascades. Mol Pharmacol. 1995 Nov;48(5):890–896. [PubMed] [Google Scholar]
- Kawaguchi H., Pilbeam C. C., Gronowicz G., Abreu C., Fletcher B. S., Herschman H. R., Raisz L. G., Hurley M. M. Transcriptional induction of prostaglandin G/H synthase-2 by basic fibroblast growth factor. J Clin Invest. 1995 Aug;96(2):923–930. doi: 10.1172/JCI118140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ko F. N., Yu S. M., Kang Y. F., Teng C. M. Characterization of the thromboxane (TP-) receptor subtype involved in proliferation in cultured vascular smooth muscle cells of rat. Br J Pharmacol. 1995 Sep;116(2):1801–1808. doi: 10.1111/j.1476-5381.1995.tb16666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopp E., Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994 Aug 12;265(5174):956–959. doi: 10.1126/science.8052854. [DOI] [PubMed] [Google Scholar]
- Kosaka T., Miyata A., Ihara H., Hara S., Sugimoto T., Takeda O., Takahashi E., Tanabe T. Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem. 1994 May 1;221(3):889–897. doi: 10.1111/j.1432-1033.1994.tb18804.x. [DOI] [PubMed] [Google Scholar]
- Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
- Lalli E., Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem. 1994 Jul 1;269(26):17359–17362. [PubMed] [Google Scholar]
- Lu X., Xie W., Reed D., Bradshaw W. S., Simmons D. L. Nonsteroidal antiinflammatory drugs cause apoptosis and induce cyclooxygenases in chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7961–7965. doi: 10.1073/pnas.92.17.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malarkey K., Belham C. M., Paul A., Graham A., McLees A., Scott P. H., Plevin R. The regulation of tyrosine kinase signalling pathways by growth factor and G-protein-coupled receptors. Biochem J. 1995 Jul 15;309(Pt 2):361–375. doi: 10.1042/bj3090361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meloche S., Seuwen K., Pagès G., Pouysségur J. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol Endocrinol. 1992 May;6(5):845–854. doi: 10.1210/mend.6.5.1603090. [DOI] [PubMed] [Google Scholar]
- Mohler E. R., Franklin M. T., Adam L. P. Intracellular signaling by 8-epi-prostaglandin F2 alpha is mediated by thromboxane A2/prostaglandin endoperoxide receptors in porcine carotid arteries. Biochem Biophys Res Commun. 1996 Aug 23;225(3):915–923. doi: 10.1006/bbrc.1996.1272. [DOI] [PubMed] [Google Scholar]
- Moncada S. Eighth Gaddum Memorial Lecture. University of London Institute of Education, December 1980. Biological importance of prostacyclin. Br J Pharmacol. 1982 May;76(1):3–31. doi: 10.1111/j.1476-5381.1982.tb09186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morinelli T. A., Zhang L. M., Newman W. H., Meier K. E. Thromboxane A2/prostaglandin H2-stimulated mitogenesis of coronary artery smooth muscle cells involves activation of mitogen-activated protein kinase and S6 kinase. J Biol Chem. 1994 Feb 25;269(8):5693–5698. [PubMed] [Google Scholar]
- Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pradelles P., Grassi J., Chabardes D., Guiso N. Enzyme immunoassays of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate using acetylcholinesterase. Anal Chem. 1989 Mar 1;61(5):447–453. doi: 10.1021/ac00180a014. [DOI] [PubMed] [Google Scholar]
- Pradelles P., Grassi J., Maclouf J. Enzyme immunoassays of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay. Anal Chem. 1985 Jun;57(7):1170–1173. doi: 10.1021/ac00284a003. [DOI] [PubMed] [Google Scholar]
- Prigent-Tessier A., Pageaux J. F., Fayard J. M., Lagarde M., Laugier C., Cohen H. Arachidonic acid up-regulates and prostaglandin E2 down-regulates the expression of pancreatic-type phospholipase A2 and prostaglandin-endoperoxide synthase 2 in uterine stromal cells. Eur J Biochem. 1996 Nov 1;241(3):872–878. doi: 10.1111/j.1432-1033.1996.00872.x. [DOI] [PubMed] [Google Scholar]
- Rimarachin J. A., Jacobson J. A., Szabo P., Maclouf J., Creminon C., Weksler B. B. Regulation of cyclooxygenase-2 expression in aortic smooth muscle cells. Arterioscler Thromb. 1994 Jul;14(7):1021–1031. doi: 10.1161/01.atv.14.7.1021. [DOI] [PubMed] [Google Scholar]
- Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachinidis A., Flesch M., Ko Y., Schrör K., Böhm M., Düsing R., Vetter H. Thromboxane A2 and vascular smooth muscle cell proliferation. Hypertension. 1995 Nov;26(5):771–780. doi: 10.1161/01.hyp.26.5.771. [DOI] [PubMed] [Google Scholar]
- Shapiro P. S., Evans J. N., Davis R. J., Posada J. A. The seven-transmembrane-spanning receptors for endothelin and thrombin cause proliferation of airway smooth muscle cells and activation of the extracellular regulated kinase and c-Jun NH2-terminal kinase groups of mitogen-activated protein kinases. J Biol Chem. 1996 Mar 8;271(10):5750–5754. doi: 10.1074/jbc.271.10.5750. [DOI] [PubMed] [Google Scholar]
- Smith W. L., DeWitt D. L. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs. Semin Nephrol. 1995 May;15(3):179–194. [PubMed] [Google Scholar]
- Williams C. S., DuBois R. N. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol. 1996 Mar;270(3 Pt 1):G393–G400. doi: 10.1152/ajpgi.1996.270.3.G393. [DOI] [PubMed] [Google Scholar]
- Xie W., Herschman H. R. v-src induces prostaglandin synthase 2 gene expression by activation of the c-Jun N-terminal kinase and the c-Jun transcription factor. J Biol Chem. 1995 Nov 17;270(46):27622–27628. doi: 10.1074/jbc.270.46.27622. [DOI] [PubMed] [Google Scholar]