Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):609–616. doi: 10.1042/bj3260609

Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol delta 24-reductase.

S H Bae 1, Y K Paik 1
PMCID: PMC1218712  PMID: 9291139

Abstract

The membrane-bound sterol delta 24-reductase (24-reductase) catalyses anaerobic reduction of the 24(25)-enes of lanosterol and other obligatory intermediates of cholesterol biosynthesis from lanosterol. A novel assay method and properties of the 24-reductase are described. More than a 120-fold induction of the 24-reductase activity was achieved by feeding rats a diet containing 5% cholestyramine plus 0.1% lovastatin in chow and by modulating diurnal variation. With this enzyme induction condition, lanosterol was converted efficiently into dihydrolanosterol in both intact hepatic microsomes and freshly isolated hepatocytes only when either miconazole or CO was added to inhibit 14 alpha-demethylation of lanosterol. AR45 cells, which are deficient in 14 alpha-methyl demethylase (14 alpha-DM), exhibit lanosterol 24-reductase activity without addition of either CO or miconazole. Conversely, inhibition of the 24-reductase was not required for the expression of 14 alpha-DM activity. Studies on the substrate specificities for the 24-reductase using different 24(25)-enes showed that the most reactive substrate was 5 alpha-cholesta-7,24-dien-3 beta-ol, which exhibited a maximal 18-fold higher kcat than that of lanosterol without the aid of the 14 alpha-DM inhibitor. In addition, both the kinetic behaviour of lanosterol substrate in relation to the 24-reductase and a non-competitive inhibition mode of U18666A (Ki 0. 157 microM) as well as Triparanol (Ki 0.523 microM), two well-known 24-reductase inhibitors, were determined. On the basis of our new findings on the preferred substrate and on the negative effect of 14 alpha-DM on the 24-reductase, we suggest that C-24 reduction of sterols takes place straight after sterol delta 8-->7 isomerization of zymosterol, which occurs several steps after C-32 demethylation of lanosterol in the 19-step pathway of cholesterol biosynthesis from lanosterol.

Full Text

The Full Text of this article is available as a PDF (650.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVIGAN J., GOODMAN D. S., STEINBERG D. Studies of cholesterol biosynthesis. IV. Reduction of lanosterol to 24,25-dihydrolanosterol by rat liver homogenates. J Biol Chem. 1963 Apr;238:1283–1286. [PubMed] [Google Scholar]
  2. AVIGAN J., STEINBERG D. Studies of cholesterol biosynthesis. III. The desmosterol reductase system in liver. J Biol Chem. 1961 Nov;236:2898–2900. [PubMed] [Google Scholar]
  3. AVIGAN J., STEINBERG D., VROMAN H. E., THOMPSON M. J., MOSETTIG E. Studies of cholesterol biosynthesis. I. The identification of desmosterol in serum and tissues of animals and man treated with MER-29. J Biol Chem. 1960 Nov;235:3123–3126. [PubMed] [Google Scholar]
  4. Akhtar M., Hunt P. F., Parvez M. A. The transfer of hydrogen from C-24 to C-25 in ergosterol biosynthesis. Biochem J. 1967 Jun;103(3):616–622. doi: 10.1042/bj1030616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Awano M., Kawaguchi A., Morisaki M., Mohri H. Identification of cholesta-7,24-dien-3 beta-ol and desmosterol in hamster cauda epididymal spermatozoa. Lipids. 1989 Jul;24(7):662–664. doi: 10.1007/BF02535086. [DOI] [PubMed] [Google Scholar]
  6. Baxter A., Fitzgerald B. J., Hutson J. L., McCarthy A. D., Motteram J. M., Ross B. C., Sapra M., Snowden M. A., Watson N. S., Williams R. J. Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J Biol Chem. 1992 Jun 15;267(17):11705–11708. [PubMed] [Google Scholar]
  7. Chen H. W., Leonard D. A., Fischer R. T., Trzaskos J. M. A mammalian mutant cell lacking detectable lanosterol 14 alpha-methyl demethylase activity. J Biol Chem. 1988 Jan 25;263(3):1248–1254. [PubMed] [Google Scholar]
  8. Croce C. M., Kieba I., Koprowski H., Molino M., Rothblat G. H. Restoration of the conversion of desmosterol to cholesterol in L-cells after hybridization with human fibroblasts. Proc Natl Acad Sci U S A. 1974 Jan;71(1):110–113. doi: 10.1073/pnas.71.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Favata M. F., Trzaskos J. M., Chen H. W., Fischer R. T., Greenberg R. S. Modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by azole antimycotics requires lanosterol demethylation, but not 24,25-epoxylanosterol formation. J Biol Chem. 1987 Sep 5;262(25):12254–12260. [PubMed] [Google Scholar]
  10. Horie M., Tsuchiya Y., Hayashi M., Iida Y., Iwasawa Y., Nagata Y., Sawasaki Y., Fukuzumi H., Kitani K., Kamei T. NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem. 1990 Oct 25;265(30):18075–18078. [PubMed] [Google Scholar]
  11. Iglesias J., Gibbons G. F. Regulation of hepatic cholesterol biosynthesis. Effects of a cytochrome P-450 inhibitor on the formation and metabolism of oxygenated sterol products of lanosterol. Biochem J. 1989 Dec 1;264(2):495–502. doi: 10.1042/bj2640495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kang M. K., Kim C. K., Johng T. N., Paik Y. K. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 8-isomerase. J Biochem. 1995 Apr;117(4):819–823. doi: 10.1093/oxfordjournals.jbchem.a124781. [DOI] [PubMed] [Google Scholar]
  13. Kim C. K., Jeon K. I., Lim D. M., Johng T. N., Trzaskos J. M., Gaylor J. L., Paik Y. K. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 14-reductase. Biochim Biophys Acta. 1995 Oct 26;1259(1):39–48. doi: 10.1016/0005-2760(95)00128-y. [DOI] [PubMed] [Google Scholar]
  14. Kraemer F. B., Spilman S. D. Effects of ketoconazole on cholesterol synthesis. J Pharmacol Exp Ther. 1986 Sep;238(3):905–911. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Mason J. I., Murry B. A., Olcott M., Sheets J. J. Imidazole antimycotics: inhibitors of steroid aromatase. Biochem Pharmacol. 1985 Apr 1;34(7):1087–1092. doi: 10.1016/0006-2952(85)90613-6. [DOI] [PubMed] [Google Scholar]
  17. Miettinen T. A. Cholesterol metabolism during ketoconazole treatment in man. J Lipid Res. 1988 Jan;29(1):43–51. [PubMed] [Google Scholar]
  18. Mitropoulos K. A., Gibbons G. F. Effect of triarimol on cholesterol biosynthesis in rat-liver subcellular. Biochem Biophys Res Commun. 1976 Aug 9;71(3):892–900. doi: 10.1016/0006-291x(76)90915-3. [DOI] [PubMed] [Google Scholar]
  19. Paik Y. K., Billheimer J. T., Magolda R. L., Gaylor J. L. Microsomal enzymes of cholesterol biosynthesis from lanosterol. Solubilization and purification of steroid 8-isomerase. J Biol Chem. 1986 May 15;261(14):6470–6477. [PubMed] [Google Scholar]
  20. Paik Y. K., Trzaskos J. M., Shafiee A., Gaylor J. L. Microsomal enzymes of cholesterol biosynthesis from lanosterol. Characterization, solubilization, and partial purification of NADPH-dependent delta 8,14-steroid 14-reductase. J Biol Chem. 1984 Nov 10;259(21):13413–13423. [PubMed] [Google Scholar]
  21. Popják G., Meenan A., Parish E. J., Nes W. D. Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparanol in cultured rat hepatoma cells. J Biol Chem. 1989 Apr 15;264(11):6230–6238. [PubMed] [Google Scholar]
  22. Schroepfer G. J., Jr Sterol biosynthesis. Annu Rev Biochem. 1981;50:585–621. doi: 10.1146/annurev.bi.50.070181.003101. [DOI] [PubMed] [Google Scholar]
  23. Sexton R. C., Panini S. R., Azran F., Rudney H. Effects of 3 beta-[2-(diethylamino)ethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures. Biochemistry. 1983 Dec 6;22(25):5687–5692. doi: 10.1021/bi00294a001. [DOI] [PubMed] [Google Scholar]
  24. Shechter I., Klinger E., Rucker M. L., Engstrom R. G., Spirito J. A., Islam M. A., Boettcher B. R., Weinstein D. B. Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J Biol Chem. 1992 Apr 25;267(12):8628–8635. [PubMed] [Google Scholar]
  25. Simpson N. E. The map of chromosome 20. J Med Genet. 1988 Dec;25(12):794–804. doi: 10.1136/jmg.25.12.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sono H., Sonoda Y., Sato Y. Purification and characterization of cytochrome P-45014DM (lanosterol 14 alpha-demethylase) from pig liver microsomes. Biochim Biophys Acta. 1991 Jul 12;1078(3):388–394. doi: 10.1016/0167-4838(91)90161-r. [DOI] [PubMed] [Google Scholar]
  27. Tanaka R. D., Edwards P. A., Lan S. F., Knöppel E. M., Fogelman A. M. The effect of cholestyramine and Mevinolin on the diurnal cycle of rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res. 1982 Sep;23(7):1026–1031. [PubMed] [Google Scholar]
  28. Trzaskos J. M., Favata M. F., Fischer R. T., Stam S. H. In situ accumulation of 3 beta-hydroxylanost-8-en-32-aldehyde in hepatocyte cultures. A putative regulator of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. J Biol Chem. 1987 Sep 5;262(25):12261–12268. [PubMed] [Google Scholar]
  29. Trzaskos J. M., Fischer R. T., Favata M. F. Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process. J Biol Chem. 1986 Dec 25;261(36):16937–16942. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES