Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):675–681. doi: 10.1042/bj3260675

Purification and properties of DNase gamma from apoptotic rat thymocytes.

D Shiokawa 1, H Ohyama 1, T Yamada 1, S Tanuma 1
PMCID: PMC1218721  PMID: 9307016

Abstract

We previously identified three distinct DNA endonucleases, DNases alpha, beta and gamma, present in rat thymocyte nuclei. On the basis of their enzymic and biochemical properties, gamma-type DNase was regarded as a candidate for the apoptotic endonuclease. Here we purified DNase gamma to apparent homogeneity from apoptotic rat thymocyte nuclei induced by X-irradiation and characterized its properties in detail. The purified DNase gamma exhibited one predominant protein band on SDS/PAGE and an endonuclease activity in a zymography with an estimated molecular mass of 33 kDa. The molecular mass of the native form determined by G2000SW gel-filtration HPLC was 30 kDa. Amino acid analysis showed that the amino acid composition of DNase gamma was similar to that of rat DNase I (molecular mass 32 kDa) but different with regard to alanine and lysine residues. The N-terminal amino acid sequence of DNase gamma was revealed to be not identical with that of rat DNase I. In accordance with previous studies, homogeneously purified DNase gamma requires both Ca2+ and Mg2+ for activity. This requirement could be partially supplied by Mn2+. Of the bivalent metal ions tested, Co2+, Ni2+, Cu2+ and Zn2+ inhibited DNase gamma activity. These bivalent cations also suppressed apoptotic DNA fragmentation in rat thymocytes irradiated by X-rays. The same order of inhibitory ability was observed for these bivalent metal ions in vivo (in intact cells) and in vitro, suggesting that the suppression of apoptotic DNA fragmentation at the cellular level is due to the inhibition of DNase gamma. DNase gamma activity was found to exist at high levels in spleen, lymph node, thymus, liver and kidney, but little was present in brain, heart or pancreas. On the basis of these findings, together with previous data, we conclude that DNase gamma is a novel DNase I-like endonuclease responsible for internucleosomal cleavage of chromatin during thymic apoptosis.

Full Text

The Full Text of this article is available as a PDF (569.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anai M., Sasaki M., Muta A., Miyagawa T. Purification and properties of a neutral endodeoxyribonuclease from guinea pig epidermis. Biochim Biophys Acta. 1981 Dec 28;656(2):183–188. doi: 10.1016/0005-2787(81)90085-x. [DOI] [PubMed] [Google Scholar]
  2. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  3. Barry M. A., Eastman A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch Biochem Biophys. 1993 Jan;300(1):440–450. doi: 10.1006/abbi.1993.1060. [DOI] [PubMed] [Google Scholar]
  4. Campbell V. W., Jackson D. A. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem. 1980 Apr 25;255(8):3726–3735. [PubMed] [Google Scholar]
  5. Cohen J. J., Duke R. C., Fadok V. A., Sellins K. S. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. doi: 10.1146/annurev.iy.10.040192.001411. [DOI] [PubMed] [Google Scholar]
  6. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  7. Gaido M. L., Cidlowski J. A. Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J Biol Chem. 1991 Oct 5;266(28):18580–18585. [PubMed] [Google Scholar]
  8. Groux H., Torpier G., Monté D., Mouton Y., Capron A., Ameisen J. C. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992 Feb 1;175(2):331–340. doi: 10.1084/jem.175.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hale A. J., Smith C. A., Sutherland L. C., Stoneman V. E., Longthorne V. L., Culhane A. C., Williams G. T. Apoptosis: molecular regulation of cell death. Eur J Biochem. 1996 Feb 15;236(1):1–26. doi: 10.1111/j.1432-1033.1996.00001.x. [DOI] [PubMed] [Google Scholar]
  10. Hallick R. B., Chelm B. K., Gray P. W., Orozco E. M., Jr Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res. 1977 Sep;4(9):3055–3064. doi: 10.1093/nar/4.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hashida T., Tanaka Y., Matsunami N., Yoshihara K., Kamiya T., Tanigawa Y., Koide S. S. Purification and properties of bull seminal plasma Ca2+,Mg2+-dependent endonuclease. J Biol Chem. 1982 Nov 10;257(21):13114–13119. [PubMed] [Google Scholar]
  12. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kreuder V., Dieckhoff J., Sittig M., Mannherz H. G. Isolation, characterisation and crystallization of deoxyribonuclease I from bovine and rat parotid gland and its interaction with rabbit skeletal muscle actin. Eur J Biochem. 1984 Mar 1;139(2):389–400. doi: 10.1111/j.1432-1033.1984.tb08018.x. [DOI] [PubMed] [Google Scholar]
  14. Lacks S. A. Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J Biol Chem. 1981 Mar 25;256(6):2644–2648. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lahm A., Suck D. DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. J Mol Biol. 1991 Dec 5;222(3):645–667. doi: 10.1016/0022-2836(91)90502-w. [DOI] [PubMed] [Google Scholar]
  17. Nelipovich P. A., Nikonova L. V., Umansky S. R. Inhibition of poly(ADP-ribose) polymerase as a possible reason for activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats. Int J Radiat Biol Relat Stud Phys Chem Med. 1988 May;53(5):749–765. doi: 10.1080/09553008814551111. [DOI] [PubMed] [Google Scholar]
  18. Nikonova L. V., Beletsky I. P., Umansky S. R. Properties of some nuclear nucleases of rat thymocytes and their changes in radiation-induced apoptosis. Eur J Biochem. 1993 Aug 1;215(3):893–901. doi: 10.1111/j.1432-1033.1993.tb18107.x. [DOI] [PubMed] [Google Scholar]
  19. Peitsch M. C., Irmler M., French L. E., Tschopp J. Genomic organisation and expression of mouse deoxyribonuclease I. Biochem Biophys Res Commun. 1995 Feb 6;207(1):62–68. doi: 10.1006/bbrc.1995.1153. [DOI] [PubMed] [Google Scholar]
  20. Peitsch M. C., Mannherz H. G., Tschopp J. The apoptosis endonucleases: cleaning up after cell death? Trends Cell Biol. 1994 Feb;4(2):37–41. doi: 10.1016/0962-8924(94)90002-7. [DOI] [PubMed] [Google Scholar]
  21. Peitsch M. C., Polzar B., Stephan H., Crompton T., MacDonald H. R., Mannherz H. G., Tschopp J. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 1993 Jan;12(1):371–377. doi: 10.1002/j.1460-2075.1993.tb05666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pérez-Sala D., Collado-Escobar D., Mollinedo F. Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem. 1995 Mar 17;270(11):6235–6242. doi: 10.1074/jbc.270.11.6235. [DOI] [PubMed] [Google Scholar]
  23. Ribeiro J. M., Carson D. A. Ca2+/Mg(2+)-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry. 1993 Sep 7;32(35):9129–9136. doi: 10.1021/bi00086a018. [DOI] [PubMed] [Google Scholar]
  24. Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
  25. Shiokawa D., Ohyama H., Yamada T., Takahashi K., Tanuma S. Identification of an endonuclease responsible for apoptosis in rat thymocytes. Eur J Biochem. 1994 Nov 15;226(1):23–30. doi: 10.1111/j.1432-1033.1994.tb20022.x. [DOI] [PubMed] [Google Scholar]
  26. Suck D., Oefner C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature. 1986 Jun 5;321(6070):620–625. doi: 10.1038/321620a0. [DOI] [PubMed] [Google Scholar]
  27. Tanuma S., Endo H. Purification and characterization of an (ADP-ribose)n glycohydrolase from human erythrocytes. Eur J Biochem. 1990 Jul 20;191(1):57–63. doi: 10.1111/j.1432-1033.1990.tb19093.x. [DOI] [PubMed] [Google Scholar]
  28. Tanuma S., Shiokawa D. Multiple forms of nuclear deoxyribonuclease in rat thymocytes. Biochem Biophys Res Commun. 1994 Sep 15;203(2):789–797. doi: 10.1006/bbrc.1994.2252. [DOI] [PubMed] [Google Scholar]
  29. Tanuma S., Shiokawa D., Tanimoto Y., Ikekita M., Sakagami H., Takeda M., Fukuda S., Kochi M. Benzylideneascorbate induces apoptosis in L929 tumor cells. Biochem Biophys Res Commun. 1993 Jul 15;194(1):29–35. doi: 10.1006/bbrc.1993.1780. [DOI] [PubMed] [Google Scholar]
  30. WIBERG J. S. On the mechanism of metal activation of deoxyribobuclease I. Arch Biochem Biophys. 1958 Feb;73(2):337–358. doi: 10.1016/0003-9861(58)90280-7. [DOI] [PubMed] [Google Scholar]
  31. White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996 Jan 1;10(1):1–15. doi: 10.1101/gad.10.1.1. [DOI] [PubMed] [Google Scholar]
  32. Wyllie A. H., Arends M. J., Morris R. G., Walker S. W., Evan G. The apoptosis endonuclease and its regulation. Semin Immunol. 1992 Dec;4(6):389–397. [PubMed] [Google Scholar]
  33. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  34. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  35. Yamada T., Ohyama H. Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int J Radiat Biol Relat Stud Phys Chem Med. 1988 Jan;53(1):65–75. doi: 10.1080/09553008814550431. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto M. Purification and some properties of an acid deoxyribonuclease from testes of chinook salmon Oncorhynchus tshawytscha. Biochim Biophys Acta. 1971 Jan 1;228(1):95–104. doi: 10.1016/0005-2787(71)90549-1. [DOI] [PubMed] [Google Scholar]
  37. Yoshihara K., Tanigawa Y., Burzio L., Koide S. S. Evidence for adenosine diphosphate ribosylation of Ca2+, Mg2+-dependent endonuclease. Proc Natl Acad Sci U S A. 1975 Jan;72(1):289–293. doi: 10.1073/pnas.72.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES