Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):717–724. doi: 10.1042/bj3260717

Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase activity and specificity.

D S Burdette 1, F Secundo 1, R S Phillips 1, J Dong 1, R A Scott 1, J G Zeikus 1
PMCID: PMC1218725  PMID: 9307020

Abstract

The Thermoanaerobacter ethanolicus 39E adhB gene encoding the secondary-alcohol dehydrogenase (secondary ADH) was overexpressed in Escherichia coli at more than 10% of total protein. The recombinant enzyme was purified in high yield (67%) by heat-treatment at 85 degrees C and (NH4)2SO4 precipitation. Site-directed mutants (C37S, H59N, D150N, D150Eand D150C were analysed to test the peptide sequence comparison-based predictions of amino acids responsible for putative catalytic Zn binding. X-ray absorption spectroscopy confirmed the presence of a protein-bound Zn atom with ZnS1(imid)1(N,O)3 co-ordination sphere. Inductively coupled plasma atomic emission spectrometry measured 0.48 Zn atoms per wild-type secondary ADH subunit. The C37S, H59N and D150N mutant enzymes bound only 0.11, 0.13 and 0.33 Zn per subunit respectively,suggesting that these residues are involved in Zn liganding. The D150E and D150C mutants retained 0.47 and 1.2 Zn atoms per subunit, indicating that an anionic side-chain moiety at this position preserves the bound Zn. All five mutant enzymes had </= 3% of wild-type catalytic activity, suggesting that the T. ethanolicus secondary ADH requires a properly co-ordinated catalytic Zn atom. The His-59 and Asp-150 mutations also altered secondary ADH affinity for propan-2-ol over a 140-fold range, whereas the overall change in affinity for ethanol spanned a range of only 7-fold, supporting the importance of the metal in secondary ADH substrate binding. The lack of significant changes in cofactor affinity as a result of these catalytic Zn ligand mutations suggested that secondary ADH substrate-and cofactor-binding sites are structurally distinct. Altering Gly198 to Asp reduced the enzyme specific activity 2.7-fold, increased the Km(app) for NADP+ 225-fold, and decreased the Km(app) for NAD+ 3-fold, supporting the prediction that the enzyme binds nicotinamide cofactor in a Rossmann fold. Our data indicate therefore that, unlike the liver primary ADH,the Rossmann-fold-containing T. ethanolicus secondary ADH binds its catalytic Zn atom using a sorbitol dehydrogenase-like Cys-His-Asp motif and does not bind a structural Zn atom.

Full Text

The Full Text of this article is available as a PDF (397.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bleicher K., Winter J. Purification and properties of F420- and NADP(+)-dependent alcohol dehydrogenases of Methanogenium liminatans and Methanobacterium palustre, specific for secondary alcohols. Eur J Biochem. 1991 Aug 15;200(1):43–51. doi: 10.1111/j.1432-1033.1991.tb21046.x. [DOI] [PubMed] [Google Scholar]
  2. Brooks S. P. A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques. 1992 Dec;13(6):906–911. [PubMed] [Google Scholar]
  3. Bryant F. O., Wiegel J., Ljungdahl L. G. Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from Thermoanaerobacter ethanolicus. Appl Environ Microbiol. 1988 Feb;54(2):460–465. doi: 10.1128/aem.54.2.460-465.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burdette D. S., Vieille C., Zeikus J. G. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J. 1996 May 15;316(Pt 1):115–122. doi: 10.1042/bj3160115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burdette D., Zeikus J. G. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase. Biochem J. 1994 Aug 15;302(Pt 1):163–170. doi: 10.1042/bj3020163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunn M. F., Hutchison J. S. Roles of zinc ion and reduced coenzyme in the formation of a transient chemical intermediate during the equine liver alcohol dehydrogenase catalyzed reduction of an aromatic aldehyde. Biochemistry. 1973 Nov 20;12(24):4882–4892. doi: 10.1021/bi00748a012. [DOI] [PubMed] [Google Scholar]
  7. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Brändén C. I. The structure of horse liver alcohol dehydrogenase. FEBS Lett. 1974 Aug 25;44(2):200–204. doi: 10.1016/0014-5793(74)80725-8. [DOI] [PubMed] [Google Scholar]
  8. Ismaiel A. A., Zhu C. X., Colby G. D., Chen J. S. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol. 1993 Aug;175(16):5097–5105. doi: 10.1128/jb.175.16.5097-5105.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobs J. W., McFarland J. T., Wainer I., Jeanmaier D., Ham C., Hamm K., Wnuk M., Lam M. Electronic substituent effects during the liver alcohol dehydrogenase catalyzed reduction of aromatic aldehydes. Biochemistry. 1974 Jan 1;13(1):60–64. doi: 10.1021/bi00698a010. [DOI] [PubMed] [Google Scholar]
  10. Jendrossek D., Steinbüchel A., Schlegel H. G. Alcohol dehydrogenase gene from Alcaligenes eutrophus: subcloning, heterologous expression in Escherichia coli, sequencing, and location of Tn5 insertions. J Bacteriol. 1988 Nov;170(11):5248–5256. doi: 10.1128/jb.170.11.5248-5256.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karlsson C., Jörnvall H., Hög J. O. Zinc binding of alcohol and sorbitol dehydrogenases. Adv Exp Med Biol. 1995;372:397–406. doi: 10.1007/978-1-4615-1965-2_47. [DOI] [PubMed] [Google Scholar]
  12. Korkhin Y., Frolow F., Bogin O., Peretz M., Kalb A. J., Burstein Y. Crystalline alcohol dehydrogenases from the mesophilic bacterium Clostridium beijerinckii and the thermophilic bacterium Thermoanaerobium brockii: preparation, characterization and molecular symmetry. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):882–886. doi: 10.1107/S0907444996001461. [DOI] [PubMed] [Google Scholar]
  13. Lamed R. J., Zeikus J. G. Novel NADP-linked alcohol--aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J. 1981 Apr 1;195(1):183–190. doi: 10.1042/bj1950183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lovitt R. W., Longin R., Zeikus J. G. Ethanol Production by Thermophilic Bacteria: Physiological Comparison of Solvent Effects on Parent and Alcohol-Tolerant Strains of Clostridium thermohydrosulfuricum. Appl Environ Microbiol. 1984 Jul;48(1):171–177. doi: 10.1128/aem.48.1.171-177.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McFarland J. T., Chu Y. H., Jacobs J. W. An unproductive binary complex of liver alcohol dehydrogenase and a chromophoric aldehyde. Biochemistry. 1974 Jan 1;13(1):65–69. doi: 10.1021/bi00698a011. [DOI] [PubMed] [Google Scholar]
  16. Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC. Ab initio curved-wave x-ray-absorption fine structure. Phys Rev B Condens Matter. 1991 Sep 1;44(9):4146–4156. doi: 10.1103/physrevb.44.4146. [DOI] [PubMed] [Google Scholar]
  17. Oka A., Sugisaki H., Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol. 1981 Apr 5;147(2):217–226. doi: 10.1016/0022-2836(81)90438-1. [DOI] [PubMed] [Google Scholar]
  18. Peretz M., Burstein Y. Amino acid sequence of alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Biochemistry. 1989 Aug 8;28(16):6549–6555. doi: 10.1021/bi00442a004. [DOI] [PubMed] [Google Scholar]
  19. Rehr JJ, Albers RC. Scattering-matrix formulation of curved-wave multiple-scattering theory: Application to x-ray-absorption fine structure. Phys Rev B Condens Matter. 1990 Apr 15;41(12):8139–8149. doi: 10.1103/physrevb.41.8139. [DOI] [PubMed] [Google Scholar]
  20. Rossmann M. G., Argos P. Exploring structural homology of proteins. J Mol Biol. 1976 Jul 25;105(1):75–95. doi: 10.1016/0022-2836(76)90195-9. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scopes R. K. An iron-activated alcohol dehydrogenase. FEBS Lett. 1983 Jun 13;156(2):303–306. doi: 10.1016/0014-5793(83)80517-1. [DOI] [PubMed] [Google Scholar]
  23. Steinbüchel A., Schlegel H. G. A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem. 1984 Jun 15;141(3):555–564. doi: 10.1111/j.1432-1033.1984.tb08229.x. [DOI] [PubMed] [Google Scholar]
  24. Wierenga R. K., Hol W. G. Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature. 1983 Apr 28;302(5911):842–844. doi: 10.1038/302842a0. [DOI] [PubMed] [Google Scholar]
  25. Zhang Z., Djebli A., Shoham M., Frolow F., Peretz M., Burstein Y. Crystal parameters of an alcohol dehydrogenase from the extreme thermophile Thermoanaerobium brockii. J Mol Biol. 1993 Mar 5;230(1):353–355. doi: 10.1006/jmbi.1993.1149. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES