Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):755–761. doi: 10.1042/bj3260755

Modulation of mitochondrial electrical potential: a candidate mechanism for drug resistance in African trypanosomes.

J M Wilkes 1, W Mulugeta 1, C Wells 1, A S Peregrine 1
PMCID: PMC1218730  PMID: 9307025

Abstract

Bloodstream forms of four populations of the livestock pathogen Trypanosoma congolense, isolated from different natural infections, have been shown to exhibit a wide range of sensitivities to the trypanocide isometamidium chloride (Samorin(R)). In mice the 50% curative doses (CD50) for Samorin range from 0.007 to 20 mg/kg body weight. Uptake of isometamidium chloride demonstrated Michaelis-Menten-type kinetics in all the populations, with Km values in the range 0.35-0.87 microM, and Vmax varied from 17 to 216 pmol/min per 10(8) cells. The magnitude of Vmax was correlated with sensitivity to the drug. In contrast, no correlation was observed between Km values and drug sensitivity. Pulse-chase experiments indicated two compartments for accumulation of drug. The first consists of freely diffusible drug that is invariant between populations; the other consists of retained isometamidium, which is of variable magnitude between the populations and is correlated with drug sensitivity. Autoradiography and fluorescence microscopy demonstrated initial, rapid accumulation of the drug within the mitochondrion, specifically the kinetoplast. In a drug-sensitive population of T. congolense, agents affecting mitochondrial function were shown to produce dose-dependent inhibition of mitochondrial membrane potential (DeltaPsimito), as measured by the accumulation of the lipophilic cations [3H]methyltriphenylphosphonium iodide or rhodamine 123. The agents also produced parallel inhibition of isometamidium uptake, suggesting an involvement of DeltaPsimito in the accumulation of the drug. When characterized in each of the four populations, the spontaneous DeltaPsimito was shown to be characteristic of each population and was correlated with Vmax for drug uptake and sensitivity to the drug in vitro and in vivo. We therefore conclude that in T. congolense DeltaPsimito is an important determinant of the rate and accumulation of the trypanocide isometamidium chloride. Populations of this trypanosome species vary with respect to DeltaPsimito, which is correlated with sensitivity to isometamidium. We suggest that when exposed to drug, the selection of such populations represents a novel mechanism of drug resistance in protozoan parasites.

Full Text

The Full Text of this article is available as a PDF (663.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger B. J., Carter N. S., Fairlamb A. H. Characterisation of pentamidine-resistant Trypanosoma brucei brucei. Mol Biochem Parasitol. 1995 Feb;69(2):289–298. doi: 10.1016/0166-6851(94)00215-9. [DOI] [PubMed] [Google Scholar]
  2. Bienen E. J., Saric M., Pollakis G., Grady R. W., Clarkson A. B., Jr Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol Biochem Parasitol. 1991 Apr;45(2):185–192. doi: 10.1016/0166-6851(91)90085-k. [DOI] [PubMed] [Google Scholar]
  3. Bienen E. J., Shaw M. K. Differential expression of the oligomycin-sensitive ATPase in bloodstream forms of Trypanosoma brucei brucei. Mol Biochem Parasitol. 1991 Sep;48(1):59–66. doi: 10.1016/0166-6851(91)90164-2. [DOI] [PubMed] [Google Scholar]
  4. Bucana C. D., Giavazzi R., Nayar R., O'Brian C. A., Seid C., Earnest L. E., Fan D. Retention of vital dyes correlates inversely with the multidrug-resistant phenotype of adriamycin-selected murine fibrosarcoma variants. Exp Cell Res. 1990 Sep;190(1):69–75. doi: 10.1016/0014-4827(90)90145-z. [DOI] [PubMed] [Google Scholar]
  5. Carter N. S., Fairlamb A. H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993 Jan 14;361(6408):173–176. doi: 10.1038/361173a0. [DOI] [PubMed] [Google Scholar]
  6. Codjia V., Mulatu W., Majiwa P. A., Leak S. G., Rowlands G. J., Authié E., d'Ieteren G. D., Peregrine A. S. Epidemiology of bovine trypanosomiasis in the Ghibe valley, southwest Ethiopia. 3. Occurrence of populations of Trypanosoma congolense resistant to diminazene, isometamidium and homidium. Acta Trop. 1993 Apr;53(2):151–163. doi: 10.1016/0001-706x(93)90026-8. [DOI] [PubMed] [Google Scholar]
  7. Divo A. A., Patton C. L., Sartorelli A. C. Evaluation of rhodamine 123 as a probe for monitoring mitochondrial function in Trypanosoma brucei spp. J Eukaryot Microbiol. 1993 May-Jun;40(3):329–335. doi: 10.1111/j.1550-7408.1993.tb04924.x. [DOI] [PubMed] [Google Scholar]
  8. Fairlamb A. H., Carter N. S., Cunningham M., Smith K. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Mol Biochem Parasitol. 1992 Jul;53(1-2):213–222. doi: 10.1016/0166-6851(92)90023-d. [DOI] [PubMed] [Google Scholar]
  9. Frommel T. O., Balber A. E. Flow cytofluorimetric analysis of drug accumulation by multidrug-resistant Trypanosoma brucei brucei and T. b. rhodesiense. Mol Biochem Parasitol. 1987 Nov;26(1-2):183–191. doi: 10.1016/0166-6851(87)90142-3. [DOI] [PubMed] [Google Scholar]
  10. Geigy R., Kauffmann M. Sleeping sickness survey in the Serengeti area (Tanzania) 1971. I. Examination of large mammals for trypanosomes. Acta Trop. 1973;30(1):12–23. [PubMed] [Google Scholar]
  11. Gros P., Talbot F., Tang-Wai D., Bibi E., Kaback H. R. Lipophilic cations: a group of model substrates for the multidrug-resistance transporter. Biochemistry. 1992 Feb 25;31(7):1992–1998. doi: 10.1021/bi00122a014. [DOI] [PubMed] [Google Scholar]
  12. Hoke G. D., McCabe F. L., Faucette L. F., Bartus J. O., Sung C. M., Jensen B. D., Heys J. R., Rush G. F., Alberts D. W., Johnson R. K. In vivo development and in vitro characterization of a subclone of murine P388 leukemia resistant to bis(diphenylphosphine)ethane. Mol Pharmacol. 1991 Jan;39(1):90–97. [PubMed] [Google Scholar]
  13. Kaminsky R., Zweygarth E. The effect of verapamil alone and in combination with trypanocides on multidrug-resistant Trypanosoma brucei brucei. Acta Trop. 1991 Aug;49(3):215–225. doi: 10.1016/0001-706x(91)90040-q. [DOI] [PubMed] [Google Scholar]
  14. Kinabo L. D., Bogan J. A. Binding of isometamidium to calf thymus DNA and lipids: pharmacological implications. J Vet Pharmacol Ther. 1987 Dec;10(4):357–362. doi: 10.1111/j.1365-2885.1987.tb00115.x. [DOI] [PubMed] [Google Scholar]
  15. Kinabo L. D., Bogan J. A. The pharmacology of isometamidium. J Vet Pharmacol Ther. 1988 Sep;11(3):233–245. doi: 10.1111/j.1365-2885.1988.tb00148.x. [DOI] [PubMed] [Google Scholar]
  16. Kinabo L. D. Pharmacology of existing drugs for animal trypanosomiasis. Acta Trop. 1993 Sep;54(3-4):169–183. doi: 10.1016/0001-706x(93)90091-o. [DOI] [PubMed] [Google Scholar]
  17. Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
  18. Leach T. M., Roberts C. J. Present status of chemotherapy and chemoprophylaxis of animal trypanosomiasis in the Eastern hemisphere. Pharmacol Ther. 1981;13(1):91–147. doi: 10.1016/0163-7258(81)90069-3. [DOI] [PubMed] [Google Scholar]
  19. Linnett P. E., Beechey R. B. Inhibitors of the ATP synthethase system. Methods Enzymol. 1979;55:472–518. doi: 10.1016/0076-6879(79)55061-7. [DOI] [PubMed] [Google Scholar]
  20. Mason M. J., Grinstein S. Ionomycin activates electrogenic Ca2+ influx in rat thymic lymphocytes. Biochem J. 1993 Nov 15;296(Pt 1):33–39. doi: 10.1042/bj2960033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morrison W. I., Roelants G. E., Mayor-Withey K. S., Murray M. Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populations. Clin Exp Immunol. 1978 Apr;32(1):25–40. [PMC free article] [PubMed] [Google Scholar]
  22. Nolan D. P., Voorheis H. P. The distribution of permeant ions demonstrates the presence of at least two distinct electrical gradients in bloodstream forms of Trypanosoma brucei. Eur J Biochem. 1991 Dec 5;202(2):411–420. doi: 10.1111/j.1432-1033.1991.tb16390.x. [DOI] [PubMed] [Google Scholar]
  23. Peregrine A. S., Knowles G., Ibitayo A. I., Scott J. R., Moloo S. K., Murphy N. B. Variation in resistance to isometamidium chloride and diminazene aceturate by clones derived from a stock of Trypanosoma congolense. Parasitology. 1991 Feb;102(Pt 1):93–100. doi: 10.1017/s0031182000060388. [DOI] [PubMed] [Google Scholar]
  24. Peregrine A. S., Ogunyemi O., Whitelaw D. D., Holmes P. H., Moloo S. K., Hirumi H., Urquhart G. M., Murray M. Factors influencing the duration of isometamidium chloride (Samorin) prophylaxis against experimental challenge with metacyclic forms of Trypanosoma congolense. Vet Parasitol. 1988 Apr;28(1-2):53–64. doi: 10.1016/0304-4017(88)90018-0. [DOI] [PubMed] [Google Scholar]
  25. Pinder M., Authie E. The appearance of isometamidium resistant Trypanosoma congolense in West Africa. Acta Trop. 1984 Sep;41(3):247–252. [PubMed] [Google Scholar]
  26. Ronot X., Benel L., Adolphe M., Mounolou J. C. Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol Cell. 1986;57(1):1–7. doi: 10.1111/j.1768-322x.1986.tb00458.x. [DOI] [PubMed] [Google Scholar]
  27. Schönefeld A., Röttcher D., Moloo S. K. The sensitivity to trypanocidal drugs of Trypanosoma vivax isolated in Kenya and Somalia. Trop Med Parasitol. 1987 Sep;38(3):177–180. [PubMed] [Google Scholar]
  28. Shapiro T. A., Englund P. T. Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proc Natl Acad Sci U S A. 1990 Feb;87(3):950–954. doi: 10.1073/pnas.87.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simpson L. The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annu Rev Microbiol. 1987;41:363–382. doi: 10.1146/annurev.mi.41.100187.002051. [DOI] [PubMed] [Google Scholar]
  30. Sones K. R., Njogu A. R., Holmes P. H. Assessment of sensitivity of Trypanosoma congolense to isometamidium chloride: a comparison of tests using cattle and mice. Acta Trop. 1988 Jun;45(2):153–164. [PubMed] [Google Scholar]
  31. Speelmans G., Staffhorst R. W., De Wolf F. A., De Kruijff B. Verapamil competes with doxorubicin for binding to anionic phospholipids resulting in increased internal concentrations and rates of passive transport of doxorubicin. Biochim Biophys Acta. 1995 Sep 13;1238(2):137–146. doi: 10.1016/0005-2736(95)00119-n. [DOI] [PubMed] [Google Scholar]
  32. Sutherland I. A., Mounsey A., Holmes P. H. Transport of isometamidium (Samorin) by drug-resistant and drug-sensitive Trypanosoma congolense. Parasitology. 1992 Jun;104(Pt 3):461–467. doi: 10.1017/s0031182000063721. [DOI] [PubMed] [Google Scholar]
  33. Sutherland I. A., Peregrine A. S., Lonsdale-Eccles J. D., Holmes P. H. Reduced accumulation of isometamidium by drug-resistant Trypanosoma congolense. Parasitology. 1991 Oct;103(Pt 2):245–251. doi: 10.1017/s0031182000059527. [DOI] [PubMed] [Google Scholar]
  34. Thissen J. A., Wang C. C. Maintenance of internal pH and an electrochemical gradient in Trypanosoma brucei. Exp Parasitol. 1991 Apr;72(3):243–251. doi: 10.1016/0014-4894(91)90143-k. [DOI] [PubMed] [Google Scholar]
  35. WRAGG W. R., WASHBOURN K., BROWN K. N., HILL J. Metamidium: a new trypanocidal drug. Nature. 1958 Oct 11;182(4641):1005–1006. doi: 10.1038/1821005a0. [DOI] [PubMed] [Google Scholar]
  36. Wellde B., Lötzsch R., Deindl G., Sadun E., Williams J., Warui G. Trypanosoma congolense. I. Clinical observations of experimentally infected cattle. Exp Parasitol. 1974 Aug;36(1):6–19. doi: 10.1016/0014-4894(74)90107-6. [DOI] [PubMed] [Google Scholar]
  37. Wilkes J. M., Peregrine A. S., Zilberstein D. The accumulation and compartmentalization of isometamidium chloride in Trypanosoma congolense, monitored by its intrinsic fluorescence. Biochem J. 1995 Nov 15;312(Pt 1):319–327. doi: 10.1042/bj3120319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wiseman A., Fields T. K., Chen L. B. Human cell variants resistant to rhodamine 6G. Somat Cell Mol Genet. 1985 Nov;11(6):541–556. doi: 10.1007/BF01534720. [DOI] [PubMed] [Google Scholar]
  39. Zhang Z. Q., Giroud C., Baltz T. Trypanosoma evansi: in vivo and in vitro determination of trypanocide resistance profiles. Exp Parasitol. 1993 Dec;77(4):387–394. doi: 10.1006/expr.1993.1098. [DOI] [PubMed] [Google Scholar]
  40. Zilberstein D., Wilkes J., Hirumi H., Peregrine A. S. Fluorescence analysis of the interaction of isometamidium with Trypanosoma congolense. Biochem J. 1993 May 15;292(Pt 1):31–35. doi: 10.1042/bj2920031. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES