Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):773–783. doi: 10.1042/bj3260773

alpha-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering.

A Weinhäusel 1, R Griessler 1, A Krebs 1, P Zipper 1, D Haltrich 1, K D Kulbe 1, B Nidetzky 1
PMCID: PMC1218732  PMID: 9307027

Abstract

The alpha-1,4-D-glucan phosphorylase from gram-positive Corynebacterium callunae has been isolated and characterized. The enzyme is inducible approx. 2-fold by maltose, but remarkably not repressed by D-glucose. The phosphorylase is a homodimer with a stoichiometric content of the cofactor pyridoxal 5'-phosphate per 88-kDa protein subunit. The specificity constants (kcat/Km, glucan) in the directions of glucan synthesis and degradation are used for the classification of the enzyme as the first bacterial starch phosphorylase. A preference for large over small substrates is determined by variations in the apparent binding constants rather than catalytic-centre activities. The contribution of substrate chain length to binding energy is explained assuming two glucan binding sites in C. callunae phosphorylase: an oligosaccharide binding site composed of five subsites and a high-affinity polysaccharide site separated from the active site. A structural model of the molecular shape of the phosphorylase was obtained from small-angle solution X-ray scattering measurements. A flat, slightly elongated, ellipsoidal model with the three axes related to each other as 1:(0.87-0.95):0.43 showed scattering equivalence with the enzyme molecule. The model of C. callunae phosphorylase differs from the structurally well-characterized rabbit-muscle phosphorylase in size and axial dimensions.

Full Text

The Full Text of this article is available as a PDF (928.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker S., Palm D., Schinzel R. Dissecting differential binding in the forward and reverse reaction of Escherichia coli maltodextrin phosphorylase using 2-deoxyglucosyl substrates. J Biol Chem. 1994 Jan 28;269(4):2485–2490. [PubMed] [Google Scholar]
  2. Becker S., Schnackerz K. D., Schinzel R. A study of binary complexes of Escherichia coli maltodextrin phosphorylase: alpha-D-glucose 1-methylenephosphonate as a probe of pyridoxal 5'-phosphate-substrate interactions. Biochim Biophys Acta. 1995 Apr 13;1243(3):381–385. doi: 10.1016/0304-4165(94)00164-s. [DOI] [PubMed] [Google Scholar]
  3. Boeck B., Schinzel R. Purification and characterisation of an alpha-glucan phosphorylase from the thermophilic bacterium Thermus thermophilus. Eur J Biochem. 1996 Jul 1;239(1):150–155. doi: 10.1111/j.1432-1033.1996.0150u.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. CARRIER E. B., McCLESKEY C. S. Intracellular starch formation in corynebacteria. J Bacteriol. 1962 May;83:1029–1036. doi: 10.1128/jb.83.5.1029-1036.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang Y. C., McCalmont T., Graves D. J. Functions of the 5'-phosphoryl group of pyridoxal 5'-phosphate in phosphorylase: a study using pyridoxal-reconstituted enzyme as a model system. Biochemistry. 1983 Oct 11;22(21):4987–4993. doi: 10.1021/bi00290a017. [DOI] [PubMed] [Google Scholar]
  7. Drueckes P., Boeck B., Palm D., Schinzel R. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Biochemistry. 1996 May 28;35(21):6727–6734. doi: 10.1021/bi951938l. [DOI] [PubMed] [Google Scholar]
  8. Drueckes P., Schinzel R., Palm D. Photometric microtiter assay of inorganic phosphate in the presence of acid-labile organic phosphates. Anal Biochem. 1995 Sep 1;230(1):173–177. doi: 10.1006/abio.1995.1453. [DOI] [PubMed] [Google Scholar]
  9. Fletterick R. J., Madsen N. B. The structures and related functions of phosphorylase a. Annu Rev Biochem. 1980;49:31–61. doi: 10.1146/annurev.bi.49.070180.000335. [DOI] [PubMed] [Google Scholar]
  10. Freundlieb S., Boos W. Alpha-amylase of Escherichia coli, mapping and cloning of the structural gene, malS, and identification of its product as a periplasmic protein. J Biol Chem. 1986 Feb 25;261(6):2946–2953. [PubMed] [Google Scholar]
  11. Godel H., Graser T., Földi P., Pfaender P., Fürst P. Measurement of free amino acids in human biological fluids by high-performance liquid chromatography. J Chromatogr. 1984 Aug 3;297:49–61. doi: 10.1016/s0021-9673(01)89028-2. [DOI] [PubMed] [Google Scholar]
  12. Hedrick J. L., Shaltiel S., Fischer E. H. Conformation changes and the mechanism of resolution of glycogen phosphorylase b. Biochemistry. 1969 Jun;8(6):2422–2429. doi: 10.1021/bi00834a026. [DOI] [PubMed] [Google Scholar]
  13. Hengge R., Boos W. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim Biophys Acta. 1983 Aug 11;737(3-4):443–478. doi: 10.1016/0304-4157(83)90009-6. [DOI] [PubMed] [Google Scholar]
  14. Higgins D. G. CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol. 1994;25:307–318. doi: 10.1385/0-89603-276-0:307. [DOI] [PubMed] [Google Scholar]
  15. Hobohm U., Houthaeve T., Sander C. Amino acid analysis and protein database compositional search as a rapid and inexpensive method to identify proteins. Anal Biochem. 1994 Oct;222(1):202–209. doi: 10.1006/abio.1994.1474. [DOI] [PubMed] [Google Scholar]
  16. Hudson J. W., Golding G. B., Crerar M. M. Evolution of allosteric control in glycogen phosphorylase. J Mol Biol. 1993 Dec 5;234(3):700–721. doi: 10.1006/jmbi.1993.1621. [DOI] [PubMed] [Google Scholar]
  17. Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
  18. O'Reilly M., Watson K. A., Schinzel R., Palm D., Johnson L. N. Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase. Nat Struct Biol. 1997 May;4(5):405–412. doi: 10.1038/nsb0597-405. [DOI] [PubMed] [Google Scholar]
  19. Palm D., Goerl R., Burger K. J. Evolution of catalytic and regulatory sites in phosphorylases. Nature. 1985 Feb 7;313(6002):500–502. doi: 10.1038/313500a0. [DOI] [PubMed] [Google Scholar]
  20. Palm D., Goerl R., Weidinger G., Zeier R., Fischer B., Schinzel R. E. coli maltodextrin phosphorylase: primary structure and deletion mapping of the C-terminal site. Z Naturforsch C. 1987 Apr;42(4):394–400. doi: 10.1515/znc-1987-0411. [DOI] [PubMed] [Google Scholar]
  21. Palm D., Klein H. W., Schinzel R., Buehner M., Helmreich E. J. The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990 Feb 6;29(5):1099–1107. doi: 10.1021/bi00457a001. [DOI] [PubMed] [Google Scholar]
  22. Palmer T. N., Ryman B. E., Whelan W. J. The action pattern of amylomaltase from Escherichia coli. Eur J Biochem. 1976 Oct 1;69(1):105–115. doi: 10.1111/j.1432-1033.1976.tb10863.x. [DOI] [PubMed] [Google Scholar]
  23. Puchwein G., Kratky O., Gölker C. F., Helmreich E. Small-angle x-ray scattering measurements on rabbit muscle glycogen phosphorylase dimer b and tetramer b. Biochemistry. 1970 Nov 24;9(24):4691–4698. doi: 10.1021/bi00826a011. [DOI] [PubMed] [Google Scholar]
  24. Raibaud O., Richet E. Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol. 1987 Jul;169(7):3059–3061. doi: 10.1128/jb.169.7.3059-3061.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rath V. L., Fletterick R. J. Parallel evolution in two homologues of phosphorylase. Nat Struct Biol. 1994 Oct;1(10):681–690. doi: 10.1038/nsb1094-681. [DOI] [PubMed] [Google Scholar]
  26. Schinzel R., Drueckes P. The phosphate recognition site of Escherichia coli maltodextrin phosphorylase. FEBS Lett. 1991 Jul 29;286(1-2):125–128. doi: 10.1016/0014-5793(91)80956-4. [DOI] [PubMed] [Google Scholar]
  27. Schwartz M., Hofnung M. La maltodextrine phosphorylase d'Escherichia coli. Eur J Biochem. 1967 Sep;2(2):132–145. doi: 10.1111/j.1432-1033.1967.tb00117.x. [DOI] [PubMed] [Google Scholar]
  28. Shaltiel S., Cortijo M. The mode of binding of pyridoxal 5'-phosphate in glycogen phosphorylase. Biochem Biophys Res Commun. 1970 Nov 9;41(3):594–600. doi: 10.1016/0006-291x(70)90054-9. [DOI] [PubMed] [Google Scholar]
  29. Shaltiel S., Hedrick J. L., Fischer E. H. Stereospecific requirements for carbonyl reagents in the resolution and reconstitution of phosphorylase b. Biochemistry. 1969 Jun;8(6):2429–2436. doi: 10.1021/bi00834a027. [DOI] [PubMed] [Google Scholar]
  30. Shimomura S., Nagai M., Fukui T. Comparative glucan specificities of two types of spinach leaf phosphorylase. J Biochem. 1982 Feb;91(2):703–717. doi: 10.1093/oxfordjournals.jbchem.a133743. [DOI] [PubMed] [Google Scholar]
  31. Soman G., Chang Y. C., Graves D. J. Effect of oxyanions of the early transition metals on rabbit skeletal muscle phosphorylase. Biochemistry. 1983 Oct 11;22(21):4994–5000. doi: 10.1021/bi00290a018. [DOI] [PubMed] [Google Scholar]
  32. Tu J. I., Jacobson G. R., Graves D. J. Isotopic effects and inhibition of polysaccharide phosphorylase by 1,5-gluconolactone. Relationship to the catalytic mechanism. Biochemistry. 1971 Mar 30;10(7):1229–1236. doi: 10.1021/bi00783a020. [DOI] [PubMed] [Google Scholar]
  33. WADA H., SNELL E. E. The enzymatic oxidation of pyridoxine and pyridoxamine phosphates. J Biol Chem. 1961 Jul;236:2089–2095. [PubMed] [Google Scholar]
  34. Watson K. A., Schinzel R., Palm D., Johnson L. N. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO J. 1997 Jan 2;16(1):1–14. doi: 10.1093/emboj/16.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES