Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):799–806. doi: 10.1042/bj3260799

Reverse-phase HPLC of the hydrophobic pulmonary surfactant proteins: detection of a surfactant protein C isoform containing Nepsilon-palmitoyl-lysine.

M Gustafsson 1, T Curstedt 1, H Jörnvall 1, J Johansson 1
PMCID: PMC1218735  PMID: 9307030

Abstract

A reverse-phase HPLC protocol for analysis of strictly hydrophobic peptides and proteins was developed. Peptide aggregation is minimized by using only 25-40% water in methanol or ethanol as initial solvents and subsequent elution with a gradient of propan-2-ol. Analysis of the pulmonary surfactant-associated proteins B (SP-B) and C (SP-C) with this method reveals several features. (1) SP-B and SP-C retain their secondary structures and separate by about 15 min over a 40 min gradient. SP-B is more hydrophilic than SP-C, which in turn behaves chromatographically like palmitoyl-ethyl ester. (2) SP-C exhibits isoforms additional to the major form characterized previously, which contains two thioester-linked palmitoyl groups. The isoforms now observed contain one or three palmitoyl moieties and constitute together 15-20% of the major form. The tripalmitoylated species contains a palmitoyl group linked to the epsilon-amino group of Lys-11, as concluded from the elution position,MS and amino acid sequence analysis. The tripalmitoylated form increases relative to the dipalmitoylated form on incubation of SP-C ina phospholipid environment. An Nepsilon-bound palmitoyl moiety constitutes a third mode of fatty acyl modification of proteins, in addition to the established Nalpha-bound myristoyl groups and S-bound palmitoyl chains. (3) The dimeric structure of SP-B, lacking covalent modifications, is confirmed by MS detection of the dimer. No SP-B isoforms were detected. (4) Denatured, non-helical SP-C can be distinguished chromatographically from the native alpha-helical peptide. (5) HPLC of SP-C at 60-75 degrees C reveals an isoform containing an extra 14 Da moiety compared with the main form. This is concluded to arise from inadvertent methyl esterification of the C-terminal carboxy group. In conclusion, this HPLC method affords a sensitive means of assessing modifications and conformations of SP-B or SP-C in different disease states and before functional studies. It might also prove useful for analysis of other strictly hydrophobic polypeptides.

Full Text

The Full Text of this article is available as a PDF (670.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Curstedt T., Jörnvall H., Johansson J. An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett. 1995 Apr 10;362(3):328–332. doi: 10.1016/0014-5793(95)00268-e. [DOI] [PubMed] [Google Scholar]
  2. Baatz J. E., Smyth K. L., Whitsett J. A., Baxter C., Absolom D. R. Structure and functions of a dimeric form of surfactant protein SP-C: a Fourier transform infrared and surfactometry study. Chem Phys Lipids. 1992 Nov;63(1-2):91–104. doi: 10.1016/0009-3084(92)90026-l. [DOI] [PubMed] [Google Scholar]
  3. Clark J. C., Wert S. E., Bachurski C. J., Stahlman M. T., Stripp B. R., Weaver T. E., Whitsett J. A. Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7794–7798. doi: 10.1073/pnas.92.17.7794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cochrane C. G., Revak S. D. Pulmonary surfactant protein B (SP-B): structure-function relationships. Science. 1991 Oct 25;254(5031):566–568. doi: 10.1126/science.1948032. [DOI] [PubMed] [Google Scholar]
  5. Creuwels L. A., Boer E. H., Demel R. A., van Golde L. M., Haagsman H. P. Neutralization of the positive charges of surfactant protein C. Effects on structure and function. J Biol Chem. 1995 Jul 7;270(27):16225–16229. doi: 10.1074/jbc.270.27.16225. [DOI] [PubMed] [Google Scholar]
  6. Creuwels L. A., Demel R. A., van Golde L. M., Benson B. J., Haagsman H. P. Effect of acylation on structure and function of surfactant protein C at the air-liquid interface. J Biol Chem. 1993 Dec 15;268(35):26752–26758. [PubMed] [Google Scholar]
  7. Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curstedt T., Jörnvall H., Robertson B., Bergman T., Berggren P. Two hydrophobic low-molecular-mass protein fractions of pulmonary surfactant. Characterization and biophysical activity. Eur J Biochem. 1987 Oct 15;168(2):255–262. doi: 10.1111/j.1432-1033.1987.tb13414.x. [DOI] [PubMed] [Google Scholar]
  9. Dunphy J. T., Greentree W. K., Manahan C. L., Linder M. E. G-protein palmitoyltransferase activity is enriched in plasma membranes. J Biol Chem. 1996 Mar 22;271(12):7154–7159. doi: 10.1074/jbc.271.12.7154. [DOI] [PubMed] [Google Scholar]
  10. Hackett M., Guo L., Shabanowitz J., Hunt D. F., Hewlett E. L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994 Oct 21;266(5184):433–435. doi: 10.1126/science.7939682. [DOI] [PubMed] [Google Scholar]
  11. Iberg N., Flückiger R. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J Biol Chem. 1986 Oct 15;261(29):13542–13545. [PubMed] [Google Scholar]
  12. Johansson J., Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997 Mar 15;244(3):675–693. doi: 10.1111/j.1432-1033.1997.00675.x. [DOI] [PubMed] [Google Scholar]
  13. Johansson J., Nilsson G., Strömberg R., Robertson B., Jörnvall H., Curstedt T. Secondary structure and biophysical activity of synthetic analogues of the pulmonary surfactant polypeptide SP-C. Biochem J. 1995 Apr 15;307(Pt 2):535–541. doi: 10.1042/bj3070535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johansson J., Persson P., Löwenadler B., Robertson B., Jörnvall H., Curstedt T. Canine hydrophobic surfactant polypeptide SP-C. A lipopeptide with one thioester-linked palmitoyl group. FEBS Lett. 1991 Apr 9;281(1-2):119–122. doi: 10.1016/0014-5793(91)80373-b. [DOI] [PubMed] [Google Scholar]
  15. Johansson J., Szyperski T., Curstedt T., Wüthrich K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015–6023. doi: 10.1021/bi00185a042. [DOI] [PubMed] [Google Scholar]
  16. Johansson J., Szyperski T., Wüthrich K. Pulmonary surfactant-associated polypeptide SP-C in lipid micelles: CD studies of intact SP-C and NMR secondary structure determination of depalmitoyl-SP-C(1-17). FEBS Lett. 1995 Apr 10;362(3):261–265. doi: 10.1016/0014-5793(95)00216-v. [DOI] [PubMed] [Google Scholar]
  17. Krook M., Ghosh D., Strömberg R., Carlquist M., Jörnvall H. Carboxyethyllysine in a protein: native carbonyl reductase/NADP(+)-dependent prostaglandin dehydrogenase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):502–506. doi: 10.1073/pnas.90.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Longo M. L., Bisagno A. M., Zasadzinski J. A., Bruni R., Waring A. J. A function of lung surfactant protein SP-B. Science. 1993 Jul 23;261(5120):453–456. doi: 10.1126/science.8332910. [DOI] [PubMed] [Google Scholar]
  19. Magee A. I., Courtneidge S. A. Two classes of fatty acid acylated proteins exist in eukaryotic cells. EMBO J. 1985 May;4(5):1137–1144. doi: 10.1002/j.1460-2075.1985.tb03751.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morrow M. R., Pérez-Gil J., Simatos G., Boland C., Stewart J., Absolom D., Sarin V., Keough K. M. Pulmonary surfactant-associated protein SP-B has little effect on acyl chains in dipalmitoylphosphatidylcholine dispersions. Biochemistry. 1993 Apr 27;32(16):4397–4402. doi: 10.1021/bi00067a032. [DOI] [PubMed] [Google Scholar]
  21. Morrow M. R., Taneva S., Simatos G. A., Allwood L. A., Keough K. M. 2H NMR studies of the effect of pulmonary surfactant SP-C on the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine headgroup: a model for transbilayer peptides in surfactant and biological membranes. Biochemistry. 1993 Oct 26;32(42):11338–11344. doi: 10.1021/bi00093a010. [DOI] [PubMed] [Google Scholar]
  22. Nogee L. M., de Mello D. E., Dehner L. P., Colten H. R. Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med. 1993 Feb 11;328(6):406–410. doi: 10.1056/NEJM199302113280606. [DOI] [PubMed] [Google Scholar]
  23. O'Brien P. J., St Jules R. S., Reddy T. S., Bazan N. G., Zatz M. Acylation of disc membrane rhodopsin may be nonenzymatic. J Biol Chem. 1987 Apr 15;262(11):5210–5215. [PubMed] [Google Scholar]
  24. Olson E. N., Towler D. A., Glaser L. Specificity of fatty acid acylation of cellular proteins. J Biol Chem. 1985 Mar 25;260(6):3784–3790. [PubMed] [Google Scholar]
  25. Omary M. B., Trowbridge I. S. Biosynthesis of the human transferrin receptor in cultured cells. J Biol Chem. 1981 Dec 25;256(24):12888–12892. [PubMed] [Google Scholar]
  26. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
  27. Pastrana B., Mautone A. J., Mendelsohn R. Fourier transform infrared studies of secondary structure and orientation of pulmonary surfactant SP-C and its effect on the dynamic surface properties of phospholipids. Biochemistry. 1991 Oct 15;30(41):10058–10064. doi: 10.1021/bi00105a033. [DOI] [PubMed] [Google Scholar]
  28. Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
  29. Pérez-Gil J., Casals C., Marsh D. Interactions of hydrophobic lung surfactant proteins SP-B and SP-C with dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol bilayers studied by electron spin resonance spectroscopy. Biochemistry. 1995 Mar 28;34(12):3964–3971. doi: 10.1021/bi00012a014. [DOI] [PubMed] [Google Scholar]
  30. Pérez-Gil J., Cruz A., Casals C. Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim Biophys Acta. 1993 Jul 1;1168(3):261–270. doi: 10.1016/0005-2760(93)90181-8. [DOI] [PubMed] [Google Scholar]
  31. Qanbar R., Cheng S., Possmayer F., Schürch S. Role of the palmitoylation of surfactant-associated protein C in surfactant film formation and stability. Am J Physiol. 1996 Oct;271(4 Pt 1):L572–L580. doi: 10.1152/ajplung.1996.271.4.L572. [DOI] [PubMed] [Google Scholar]
  32. Schmidt M. F., McIlhinney R. A., Burns G. R. Palmitoylation of endogenous and viral acceptor proteins by fatty acyltransferase (PAT) present in erythrocyte ghosts and in placental membranes. Biochim Biophys Acta. 1995 Aug 3;1257(3):205–213. doi: 10.1016/0005-2760(95)00062-h. [DOI] [PubMed] [Google Scholar]
  33. Stults J. T., Griffin P. R., Lesikar D. D., Naidu A., Moffat B., Benson B. J. Lung surfactant protein SP-C from human, bovine, and canine sources contains palmityl cysteine thioester linkages. Am J Physiol. 1991 Aug;261(2 Pt 1):L118–L125. doi: 10.1152/ajplung.1991.261.2.L118. [DOI] [PubMed] [Google Scholar]
  34. Takahashi A., Waring A. J., Amirkhanian J., Fan B., Taeusch H. W. Structure-function relationships of bovine pulmonary surfactant proteins: SP-B and SP-C. Biochim Biophys Acta. 1990 May 1;1044(1):43–49. doi: 10.1016/0005-2760(90)90216-k. [DOI] [PubMed] [Google Scholar]
  35. Vandenbussche G., Clercx A., Clercx M., Curstedt T., Johansson J., Jörnvall H., Ruysschaert J. M. Secondary structure and orientation of the surfactant protein SP-B in a lipid environment. A Fourier transform infrared spectroscopy study. Biochemistry. 1992 Sep 29;31(38):9169–9176. doi: 10.1021/bi00153a008. [DOI] [PubMed] [Google Scholar]
  36. Vandenbussche G., Clercx A., Curstedt T., Johansson J., Jörnvall H., Ruysschaert J. M. Structure and orientation of the surfactant-associated protein C in a lipid bilayer. Eur J Biochem. 1992 Jan 15;203(1-2):201–209. doi: 10.1111/j.1432-1033.1992.tb19848.x. [DOI] [PubMed] [Google Scholar]
  37. Vorbroker D. K., Profitt S. A., Nogee L. M., Whitsett J. A. Aberrant processing of surfactant protein C in hereditary SP-B deficiency. Am J Physiol. 1995 Apr;268(4 Pt 1):L647–L656. doi: 10.1152/ajplung.1995.268.4.L647. [DOI] [PubMed] [Google Scholar]
  38. Voss T., Schäfer K. P., Nielsen P. F., Schäfer A., Maier C., Hannappel E., Maassen J., Landis B., Klemm K., Przybylski M. Primary structure differences of human surfactant-associated proteins isolated from normal and proteinosis lung. Biochim Biophys Acta. 1992 Apr 14;1138(4):261–267. doi: 10.1016/0925-4439(92)90002-5. [DOI] [PubMed] [Google Scholar]
  39. Wang Z., Gurel O., Baatz J. E., Notter R. H. Acylation of pulmonary surfactant protein-C is required for its optimal surface active interactions with phospholipids. J Biol Chem. 1996 Aug 9;271(32):19104–19109. doi: 10.1074/jbc.271.32.19104. [DOI] [PubMed] [Google Scholar]
  40. Weimbs T., Stoffel W. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry. 1992 Dec 15;31(49):12289–12296. doi: 10.1021/bi00164a002. [DOI] [PubMed] [Google Scholar]
  41. Yu S. H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim Biophys Acta. 1990 Oct 1;1046(3):233–241. doi: 10.1016/0005-2760(90)90236-q. [DOI] [PubMed] [Google Scholar]
  42. van Eijk M., De Haas C. G., Haagsman H. P. Quantitative analysis of pulmonary surfactant proteins B and C. Anal Biochem. 1995 Dec 10;232(2):231–237. doi: 10.1006/abio.1995.0012. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES