Abstract
Understanding the biochemical events associated with glucose-stimulated insulin secretion by pancreatic beta cells is of importance in gaining insight into both the pathophysiology of diabetes and the development of tissue-engineered bioartificial pancreatic substitutes. We have investigated the effects of glucose concentration on the bioenergetic status and on the metabolic and secretory functions exhibited by mouse insulinoma betaTC3 cells entrapped in calcium alginate/poly-L-lysine/alginate (APA) beads. Cells entrapped in APA beads constitute a possible implantable bioartificial pancreas for the long-term treatment of insulin-dependent diabetes mellitus. Our results show that, in entrapped betaTC3 cells, the oxygen consumption rate and the intracellular nucleotide triphosphate levels are unaffected by a step change in glucose concentration from 16 mM to 0 mM for 4.5 h and then back to 16 mM. The intracellular Pi level and the ammonia production rate were doubled, while insulin secretion was decreased 10-fold, upon switching from 16 mM to 0 mM glucose. The implications of these findings in the context of pancreatic beta cell biochemistry and the mechanism of the 'Fuel Hypothesis' are discussed.
Full Text
The Full Text of this article is available as a PDF (807.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Efrat S., Leiser M., Surana M., Tal M., Fusco-Demane D., Fleischer N. Murine insulinoma cell line with normal glucose-regulated insulin secretion. Diabetes. 1993 Jun;42(6):901–907. doi: 10.2337/diab.42.6.901. [DOI] [PubMed] [Google Scholar]
- Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erecińska M., Bryła J., Michalik M., Meglasson M. D., Nelson D. Energy metabolism in islets of Langerhans. Biochim Biophys Acta. 1992 Aug 7;1101(3):273–295. doi: 10.1016/0005-2728(92)90084-f. [DOI] [PubMed] [Google Scholar]
- Evanochko W. T., Sakai T. T., Ng T. C., Krishna N. R., Kim H. D., Zeidler R. B., Ghanta V. K., Brockman R. W., Schiffer L. M., Braunschweiger P. G. NMR study of in vivo RIF-1 tumors. Analysis of perchloric acid extracts and identification of 1H, 31P and 13C resonances. Biochim Biophys Acta. 1984 Sep 14;805(1):104–116. doi: 10.1016/0167-4889(84)90042-9. [DOI] [PubMed] [Google Scholar]
- Freinkel N., Younsi C. E., Bonnar J., Dawson R. M. Rapid transient efflux of phosphate ions from pancreatic islets as an early action of insulin secretagogues. J Clin Invest. 1974 Nov;54(5):1179–1189. doi: 10.1172/JCI107861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh A., Ronner P., Cheong E., Khalid P., Matschinsky F. M. The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet beta-cells in the isolated perfused rat pancreas. J Biol Chem. 1991 Dec 5;266(34):22887–22892. [PubMed] [Google Scholar]
- Halban P. A., Praz G. A., Wollheim C. B. Abnormal glucose metabolism accompanies failure of glucose to stimulate insulin release from a rat pancreatic cell line (RINm5F). Biochem J. 1983 May 15;212(2):439–443. doi: 10.1042/bj2120439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutton J. C., Malaisse W. J. Dynamics of O2 consumption in rat pancreatic islets. Diabetologia. 1980 May;18(5):395–405. doi: 10.1007/BF00276821. [DOI] [PubMed] [Google Scholar]
- Kriat M., Fantini J., Vion-Dury J., Confort-Gouny S., Galons J. P., Cozzone P. J. Energetic metabolism of glucose, mannose and galactose in glucose-starved rat insulinoma cells anchored on microcarrier beads. A phosphorus-31 NMR study. Biochimie. 1992 Sep-Oct;74(9-10):949–955. doi: 10.1016/0300-9084(92)90079-t. [DOI] [PubMed] [Google Scholar]
- Lacy P. E., Hegre O. D., Gerasimidi-Vazeou A., Gentile F. T., Dionne K. E. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science. 1991 Dec 20;254(5039):1782–1784. doi: 10.1126/science.1763328. [DOI] [PubMed] [Google Scholar]
- Lanza R. P., Butler D. H., Borland K. M., Staruk J. E., Faustman D. L., Solomon B. A., Muller T. E., Rupp R. G., Maki T., Monaco A. P. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11100–11104. doi: 10.1073/pnas.88.24.11100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanza R. P., Ecker D., Kühtreiber W. M., Staruk J. E., Marsh J., Chick W. L. A simple method for transplanting discordant islets into rats using alginate gel spheres. Transplantation. 1995 May 27;59(10):1485–1487. doi: 10.1097/00007890-199505270-00023. [DOI] [PubMed] [Google Scholar]
- Liang Y., Bai G., Doliba N., Buettger C., Wang L., Berner D. K., Matschinsky F. M. Glucose metabolism and insulin release in mouse beta HC9 cells, as model for wild-type pancreatic beta-cells. Am J Physiol. 1996 May;270(5 Pt 1):E846–E857. doi: 10.1152/ajpendo.1996.270.5.E846. [DOI] [PubMed] [Google Scholar]
- Liang Y., Matschinsky F. M. Mechanisms of action of nonglucose insulin secretagogues. Annu Rev Nutr. 1994;14:59–81. doi: 10.1146/annurev.nu.14.070194.000423. [DOI] [PubMed] [Google Scholar]
- Lim F., Sun A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980 Nov 21;210(4472):908–910. doi: 10.1126/science.6776628. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Best L., Kawazu S., Malaisse-Lagae F., Sener A. The stimulus-secretion coupling of glucose-induced insulin release: fuel metabolism in islets deprived of exogenous nutrient. Arch Biochem Biophys. 1983 Jul 1;224(1):102–110. doi: 10.1016/0003-9861(83)90193-5. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Sener A. Glucose-induced changes in cytosolic ATP content in pancreatic islets. Biochim Biophys Acta. 1987 Feb 18;927(2):190–195. doi: 10.1016/0167-4889(87)90134-0. [DOI] [PubMed] [Google Scholar]
- Matschinsky F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996 Feb;45(2):223–241. doi: 10.2337/diab.45.2.223. [DOI] [PubMed] [Google Scholar]
- Matschinsky F. M., Ellerman J. E., Krzanowski J., Kotler-Brajtburg J., Landgraf R., Fertel R. The dual function of glucose in islets of Langerhans. J Biol Chem. 1971 Feb 25;246(4):1007–1011. [PubMed] [Google Scholar]
- Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
- Matschinsky F. M., Landgraf R., Ellerman J., Kotler-Brajtburg J. Glucoreceptor mechanisms in islets of Langerhans. Diabetes. 1972;21(2 Suppl):555–569. doi: 10.2337/diab.21.2.s555. [DOI] [PubMed] [Google Scholar]
- Meglasson M. D., Matschinsky F. M. New perspectives on pancreatic islet glucokinase. Am J Physiol. 1984 Jan;246(1 Pt 1):E1–13. doi: 10.1152/ajpendo.1984.246.1.E1. [DOI] [PubMed] [Google Scholar]
- Meglasson M. D., Nelson J., Nelson D., Erecinska M. Bioenergetic response of pancreatic islets to stimulation by fuel molecules. Metabolism. 1989 Dec;38(12):1188–1195. doi: 10.1016/0026-0495(89)90158-3. [DOI] [PubMed] [Google Scholar]
- Merle M., Pianet I., Canioni P., Labouesse J. Comparative 31P and 1H NMR studies on rat astrocytes and C6 glioma cells in culture. Biochimie. 1992 Sep-Oct;74(9-10):919–930. doi: 10.1016/0300-9084(92)90076-q. [DOI] [PubMed] [Google Scholar]
- Mukundan N. E., Flanders P. C., Constantinidis I., Papas K. K., Sambanis A. Oxygen consumption rates of free and alginate-entrapped beta TC3 mouse insulinoma cells. Biochem Biophys Res Commun. 1995 May 5;210(1):113–118. doi: 10.1006/bbrc.1995.1634. [DOI] [PubMed] [Google Scholar]
- Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
- Ohgawara H., Miyazaki J., Karibe S., Tashiro F., Akaike T., Hashimoto Y. Embedded-culture of pancreatic beta-cells derived from transgenic mouse insulinoma as a potential source for xenotransplantation using a diffusion chamber. Cell Transplant. 1995 May-Jun;4(3):307–313. doi: 10.1177/096368979500400309. [DOI] [PubMed] [Google Scholar]
- Ohta M., Nelson D., Nelson J., Meglasson M. D., Erecińska M. Oxygen and temperature dependence of stimulated insulin secretion in isolated rat islets of Langerhans. J Biol Chem. 1990 Oct 15;265(29):17525–17532. [PubMed] [Google Scholar]
- Ohta M., Nelson D., Wilson J. M., Meglasson M. D., Erecińska M. Relationships between energy level and insulin secretion in isolated rat islets of Langerhans. Manipulation of [ATP]/[ADP][Pi] by 2-deoxy-D-glucose. Biochem Pharmacol. 1992 Apr 15;43(8):1859–1864. doi: 10.1016/0006-2952(92)90722-u. [DOI] [PubMed] [Google Scholar]
- Panten U., Zünkler B. J., Scheit S., Kirchhoff K., Lenzen S. Regulation of energy metabolism in pancreatic islets by glucose and tolbutamide. Diabetologia. 1986 Sep;29(9):648–654. doi: 10.1007/BF00869265. [DOI] [PubMed] [Google Scholar]
- Pauwels P. J., Opperdoes F. R., Trouet A. Effects of antimycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J Neurochem. 1985 Jan;44(1):143–148. doi: 10.1111/j.1471-4159.1985.tb07123.x. [DOI] [PubMed] [Google Scholar]
- Pianet I., Merle M., Labouesse J., Canioni P. Phosphorus-31 nuclear magnetic resonance of C6 glioma cells and rat astrocytes. Evidence for a modification of the longitudinal relaxation time of ATP and Pi during glucose starvation. Eur J Biochem. 1991 Jan 1;195(1):87–95. doi: 10.1111/j.1432-1033.1991.tb15679.x. [DOI] [PubMed] [Google Scholar]
- Reitzer L. J., Wice B. M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979 Apr 25;254(8):2669–2676. [PubMed] [Google Scholar]
- Sambanis A., Papas K. K., Flanders P. C., Long R. C., Jr, Kang H., Constantinidis I. Towards the development of a bioartificial pancreas: immunoisolation and NMR monitoring of mouse insulinomas. Cytotechnology. 1994;15(1-3):351–363. doi: 10.1007/BF00762410. [DOI] [PubMed] [Google Scholar]
- Sener A., Blachier F., Malaisse W. J. Crabtree effect in tumoral pancreatic islet cells. J Biol Chem. 1988 Feb 5;263(4):1904–1909. [PubMed] [Google Scholar]
- Sener A., Giroix M. H., Hellerström C., Malaisse W. J. Influence of D-glucose upon the respiratory and secretory response of insulin-producing tumor cells to 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. Cancer Res. 1987 Nov 15;47(22):5905–5907. [PubMed] [Google Scholar]
- Sener A., Leclercq-Meyer V., Giroix M. H., Malaisse W. J., Hellerström C. Opposite effects of D-glucose and a nonmetabolized analogue of L-leucine on respiration and secretion in insulin-producing tumoral cells (RINm5F). Diabetes. 1987 Feb;36(2):187–192. doi: 10.2337/diab.36.2.187. [DOI] [PubMed] [Google Scholar]
- Soon-Shiong P., Heintz R. E., Merideth N., Yao Q. X., Yao Z., Zheng T., Murphy M., Moloney M. K., Schmehl M., Harris M. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet. 1994 Apr 16;343(8903):950–951. doi: 10.1016/s0140-6736(94)90067-1. [DOI] [PubMed] [Google Scholar]
- Tal M., Thorens B., Surana M., Fleischer N., Lodish H. F., Hanahan D., Efrat S. Glucose transporter isotypes switch in T-antigen-transformed pancreatic beta cells growing in culture and in mice. Mol Cell Biol. 1992 Jan;12(1):422–432. doi: 10.1128/mcb.12.1.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trus M. D., Zawalich W. S., Burch P. T., Berner D. K., Weill V. A., Matschinsky F. M. Regulation of glucose metabolism in pancreatic islets. Diabetes. 1981 Nov;30(11):911–922. doi: 10.2337/diab.30.11.911. [DOI] [PubMed] [Google Scholar]