Abstract
A peptide containing residues 1-50 of the Aalpha-chain of fibrinogen, expressed as a fusion peptide with beta-galactosidase, is rapidly cleaved by thrombin at Arg-16, similarly to whole fibrinogen. When Phe-8, which is highly conserved, is replaced with tyrosine (F8Y), the cleavage is slowed drastically [Lord, Byrd, Hede, Wei and Colby (1990) J. Biol. Chem. 265, 838-843]. To examine the structural basis for this result, we have determined the crystal structure of bovine thrombin complexed with a synthetic peptide containing residues 1-23 of fibrinogen Aalpha and the F8Y mutation. The crystals are in space group P43212, with unit-cell dimensions of a = 88.3 A (1 A = 0.1 nm), c = 195.5 A and two complexes in the asymmetric unit. The final R factor is 0.183 for 2sigma data from 7.0 to 2.5 A resolution.There is continuous density for the five residues in the P3, P2, P1, P1' and P2' positions of the peptide (Gly-14f to Pro-18f) at the active site of thrombin, and isolated but well-defined density for Tyr-8f at position P9 in the hydrophobic pocket of thrombin. The tyrosine residue is shifted relative to phenylalanine in the native peptide because the phenol side chain is larger and makes a novel, intrapeptide hydrogen bond with Gly-14f. Adjacent peptide residues cannot form the hydrogen bonds that stabilize the secondary structure of the native peptide. Consequently, the 'reaction'geometry at the scissile bond, eight residues from the mutation, is perturbed and the peptide is mostly uncleaved in the crystal structure.
Full Text
The Full Text of this article is available as a PDF (537.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Binnie C. G., Lord S. T. The fibrinogen sequences that interact with thrombin. Blood. 1993 Jun 15;81(12):3186–3192. [PubMed] [Google Scholar]
- Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
- Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandstetter H., Turk D., Hoeffken H. W., Grosse D., Stürzebecher J., Martin P. D., Edwards B. F., Bode W. Refined 2.3 A X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. J Mol Biol. 1992 Aug 20;226(4):1085–1099. doi: 10.1016/0022-2836(92)91054-s. [DOI] [PubMed] [Google Scholar]
- Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
- Fenton J. W., 2nd, Olson T. A., Zabinski M. P., Wilner G. D. Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition. Biochemistry. 1988 Sep 6;27(18):7106–7112. doi: 10.1021/bi00418a066. [DOI] [PubMed] [Google Scholar]
- Fenton J. W., 2nd Regulation of thrombin generation and functions. Semin Thromb Hemost. 1988 Jul;14(3):234–240. doi: 10.1055/s-2007-1002783. [DOI] [PubMed] [Google Scholar]
- Grütter M. G., Priestle J. P., Rahuel J., Grossenbacher H., Bode W., Hofsteenge J., Stone S. R. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 1990 Aug;9(8):2361–2365. doi: 10.1002/j.1460-2075.1990.tb07410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haverkate F., Koopman J., Kluft C., D'Angelo A., Cattaneo M., Mannucci P. M. Fibrinogen Milano II: a congenital dysfibrinogenaemia associated with juvenile arterial and venous thrombosis. Thromb Haemost. 1986 Feb 28;55(1):131–135. [PubMed] [Google Scholar]
- Henschen A., Lottspeich F., Kehl M., Southan C. Covalent structure of fibrinogen. Ann N Y Acad Sci. 1983 Jun 27;408:28–43. doi: 10.1111/j.1749-6632.1983.tb23232.x. [DOI] [PubMed] [Google Scholar]
- Lord S. T., Byrd P. A., Hede K. L., Wei C., Colby T. J. Analysis of fibrinogen A alpha-fusion proteins. Mutants which inhibit thrombin equivalently are not equally good substrates. J Biol Chem. 1990 Jan 15;265(2):838–843. [PubMed] [Google Scholar]
- Marsh H. C., Jr, Meinwald Y. C., Lee S., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. Direct evidence for the involvement of phenylalanine at position P9. Biochemistry. 1982 Nov 23;21(24):6167–6171. doi: 10.1021/bi00267a022. [DOI] [PubMed] [Google Scholar]
- Marsh H. C., Jr, Meinwald Y. C., Thannhauser T. W., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. Kinetic evidence for involvement of aspartic acid at position P10. Biochemistry. 1983 Aug 30;22(18):4170–4174. doi: 10.1021/bi00287a002. [DOI] [PubMed] [Google Scholar]
- Martin P. D., Malkowski M. G., DiMaio J., Konishi Y., Ni F., Edwards B. F. Bovine thrombin complexed with an uncleavable analog of residues 7-19 of fibrinogen A alpha: geometry of the catalytic triad and interactions of the P1', P2', and P3' substrate residues. Biochemistry. 1996 Oct 8;35(40):13030–13039. doi: 10.1021/bi960656y. [DOI] [PubMed] [Google Scholar]
- Martin P. D., Robertson W., Turk D., Huber R., Bode W., Edwards B. F. The structure of residues 7-16 of the A alpha-chain of human fibrinogen bound to bovine thrombin at 2.3-A resolution. J Biol Chem. 1992 Apr 15;267(11):7911–7920. [PubMed] [Google Scholar]
- Ni F., Meinwald Y. C., Vásquez M., Scheraga H. A. High-resolution NMR studies of fibrinogen-like peptides in solution: structure of a thrombin-bound peptide corresponding to residues 7-16 of the A alpha chain of human fibrinogen. Biochemistry. 1989 Apr 4;28(7):3094–3105. doi: 10.1021/bi00433a053. [DOI] [PubMed] [Google Scholar]
- Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
- Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Scheraga H. A. Chemical basis of thrombin interactions with fibrinogen. Ann N Y Acad Sci. 1986;485:124–133. doi: 10.1111/j.1749-6632.1986.tb34574.x. [DOI] [PubMed] [Google Scholar]
- Stubbs M. T., Bode W. A player of many parts: the spotlight falls on thrombin's structure. Thromb Res. 1993 Jan 1;69(1):1–58. doi: 10.1016/0049-3848(93)90002-6. [DOI] [PubMed] [Google Scholar]
- Stubbs M. T., Oschkinat H., Mayr I., Huber R., Angliker H., Stone S. R., Bode W. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur J Biochem. 1992 May 15;206(1):187–195. doi: 10.1111/j.1432-1033.1992.tb16916.x. [DOI] [PubMed] [Google Scholar]
- Vitali J., Martin P. D., Malkowski M. G., Olsen C. M., Johnson P. H., Edwards B. F. Structure of a bovine thrombin-hirudin51-65 complex determined by a combination of molecular replacement and graphics. Incorporation of known structural information in molecular replacement. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):453–464. doi: 10.1107/S0907444996000364. [DOI] [PubMed] [Google Scholar]
- Vitali J., Martin P. D., Malkowski M. G., Robertson W. D., Lazar J. B., Winant R. C., Johnson P. H., Edwards B. F. The structure of a complex of bovine alpha-thrombin and recombinant hirudin at 2.8-A resolution. J Biol Chem. 1992 Sep 5;267(25):17670–17678. [PubMed] [Google Scholar]