Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):823–827. doi: 10.1042/bj3260823

Fructose-induced increase in intracellular free Mg2+ ion concentration in rat hepatocytes: relation with the enzymes of glycogen metabolism.

V Gaussin 1, P Gailly 1, J M Gillis 1, L Hue 1
PMCID: PMC1218738  PMID: 9307033

Abstract

In rat hepatocytes subjected to a fructose load, ATP content decreased from 3.8 to 2.6 micromol/g of cells. Under these conditions, the intracellular free Mg2+ ion concentration,as measured with mag-fura 2, increased from 0.25 to 0.43 micromol/g of cells and 0.35 micromol of Mg2+ ions were released per g of cells in the extracellular medium. Therefore the increase in the intracellular free Mg2+ ion concentration was less than expected from the decrease in ATP, indicating that approx. 80% of the Mg2+ ions released from MgATP2- were buffered inside the cells. When this buffer capacity was challenged with an extra Mg2+ ion load by blocking the fructose-induced Mg2+ efflux, again approx. 80% of the extra Mg2+ ion load was buffered. The remaining 20% appearing as free Mg2+ions in fructose-treated hepatocytes could act as second messenger for enzymes having a Km for Mg2+ in the millimolar range. Fructose activated glycogen synthase and glycogen phosphorylase, although both the time course and the dose-dependence of activation were different. This was reflected in a stimulation of glycogen synthesis with concentrations of fructose below 5 mM. Indeed, activation of glycogen synthase reached a maximum at 30 min of incubation and was observed with small (5 mM or less) concentrations of fructose, whereas the activation of glycogen phosphorylase was almost immediate (within 5 min) and maximal with large doses of fructose. The fructose-induced activation of glycogen phosphorylase, but not that of glycogen synthase, could be related to an increase in free Mg2+ ion concentration.

Full Text

The Full Text of this article is available as a PDF (354.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baquet A., Meijer A. J., Hue L. Hepatocyte swelling increases inositol 1,4,5-trisphosphate, calcium and cyclic AMP concentration but antagonizes phosphorylase activation by Ca2(+)-dependent hormones. FEBS Lett. 1991 Jan 14;278(1):103–106. doi: 10.1016/0014-5793(91)80094-j. [DOI] [PubMed] [Google Scholar]
  2. Bond M., Vadasz G., Somlyo A. V., Somlyo A. P. Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon. J Biol Chem. 1987 Nov 15;262(32):15630–15636. [PubMed] [Google Scholar]
  3. Charest R., Blackmore P. F., Berthon B., Exton J. H. Changes in free cytosolic Ca2+ in hepatocytes following alpha 1-adrenergic stimulation. Studies on Quin-2-loaded hepatocytes. J Biol Chem. 1983 Jul 25;258(14):8769–8773. [PubMed] [Google Scholar]
  4. Chatton J. Y., Liu H., Stucki J. W. Simultaneous measurements of Ca2+ in the intracellular stores and the cytosol of hepatocytes during hormone-induced Ca2+ oscillations. FEBS Lett. 1995 Jul 10;368(1):165–168. doi: 10.1016/0014-5793(95)00632-j. [DOI] [PubMed] [Google Scholar]
  5. Cittadini A., Scarpa A. Intracellular Mg2+ homeostasis of Ehrlich ascites tumor cells. Arch Biochem Biophys. 1983 Nov;227(1):202–209. doi: 10.1016/0003-9861(83)90363-6. [DOI] [PubMed] [Google Scholar]
  6. Ciudad C. J., Carabaza A., Guinovart J. J. Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1195–1200. doi: 10.1016/s0006-291x(86)80171-1. [DOI] [PubMed] [Google Scholar]
  7. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen S. M. Simultaneous 13C and 31P NMR studies of perfused rat liver. Effects of insulin and glucagon and a 13C NMR assay of free Mg2+. J Biol Chem. 1983 Dec 10;258(23):14294–14308. [PubMed] [Google Scholar]
  9. Corkey B. E., Duszynski J., Rich T. L., Matschinsky B., Williamson J. R. Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem. 1986 Feb 25;261(6):2567–2574. [PubMed] [Google Scholar]
  10. Doperé F., Vanstapel F., Stalmans W. Glycogen-synthase phosphatase activity in rat liver. Two protein components and their requirement for the activation of different types of substrate. Eur J Biochem. 1980 Feb;104(1):137–146. doi: 10.1111/j.1432-1033.1980.tb04409.x. [DOI] [PubMed] [Google Scholar]
  11. Gasbarrini A., Borle A. B., Farghali H., Bender C., Francavilla A., Van Thiel D. Effect of anoxia on intracellular ATP, Na+i, Ca2+i, Mg2+i, and cytotoxicity in rat hepatocytes. J Biol Chem. 1992 Apr 5;267(10):6654–6663. [PubMed] [Google Scholar]
  12. Gaussin V., Baquet A., Hue L. Cell shrinkage follows, rather than mediates, the short-term effects of glucagon on carbohydrate metabolism. Biochem J. 1992 Oct 1;287(Pt 1):17–20. doi: 10.1042/bj2870017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grubbs R. D., Walter A. Determination of cytosolic Mg2+ activity and buffering in BC3H-1 cells with mag-fura-2. Mol Cell Biochem. 1994 Jul 13;136(1):11–22. doi: 10.1007/BF00931599. [DOI] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Harman A. W., Nieminen A. L., Lemasters J. J., Herman B. Cytosolic free magnesium, ATP and blebbing during chemical hypoxia in cultured rat hepatocytes. Biochem Biophys Res Commun. 1990 Jul 31;170(2):477–483. doi: 10.1016/0006-291x(90)92116-h. [DOI] [PubMed] [Google Scholar]
  16. Hofer A. M., Machen T. E. Direct measurement of free Ca in organelles of gastric epithelial cells. Am J Physiol. 1994 Sep;267(3 Pt 1):G442–G451. doi: 10.1152/ajpgi.1994.267.3.G442. [DOI] [PubMed] [Google Scholar]
  17. Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hue L., Felíu J. E., Hers H. G. Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. A parallel study of the effect of phenylephrine and of glucagon. Biochem J. 1978 Dec 15;176(3):791–797. doi: 10.1042/bj1760791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hurley T. W., Ryan M. P., Brinck R. W. Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol. 1992 Aug;263(2 Pt 1):C300–C307. doi: 10.1152/ajpcell.1992.263.2.C300. [DOI] [PubMed] [Google Scholar]
  20. Ingebritsen T. S., Stewart A. A., Cohen P. The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. Eur J Biochem. 1983 May 2;132(2):297–307. doi: 10.1111/j.1432-1033.1983.tb07362.x. [DOI] [PubMed] [Google Scholar]
  21. Jakob A., Becker J., Schöttli G., Fritzsch G. Alpha 1-adrenergic stimulation causes Mg2+ release from perfused rat liver. FEBS Lett. 1989 Mar 27;246(1-2):127–130. doi: 10.1016/0014-5793(89)80267-4. [DOI] [PubMed] [Google Scholar]
  22. Kass G. E., Webb D. L., Chow S. C., Llopis J., Berggren P. O. Receptor-mediated Mn2+ influx in rat hepatocytes: comparison of cells loaded with Fura-2 ester and cells microinjected with Fura-2 salt. Biochem J. 1994 Aug 15;302(Pt 1):5–9. doi: 10.1042/bj3020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Katz J., Golden S., Wals P. A. Glycogen synthesis by rat hepatocytes. Biochem J. 1979 May 15;180(2):389–402. doi: 10.1042/bj1800389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koike M., Kashiwagura T., Takeguchi N. Gluconeogenesis stimulated by extracellular ATP is triggered by the initial increase in the intracellular Ca2+ concentration of the periphery of hepatocytes. Biochem J. 1992 Apr 1;283(Pt 1):265–272. doi: 10.1042/bj2830265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lavoinne A., Baquet A., Hue L. Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes. Biochem J. 1987 Dec 1;248(2):429–437. doi: 10.1042/bj2480429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li H. Y., Dai L. J., Krieger C., Quamme G. A. Intracellular Mg2+ concentrations following metabolic inhibition in opossum kidney cells. Biochim Biophys Acta. 1993 Jun 19;1181(3):307–315. doi: 10.1016/0925-4439(93)90037-2. [DOI] [PubMed] [Google Scholar]
  27. Mäenpä P. H., Raivio K. O., Kekomäki M. P. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science. 1968 Sep 20;161(3847):1253–1254. doi: 10.1126/science.161.3847.1253. [DOI] [PubMed] [Google Scholar]
  28. Raju B., Murphy E., Levy L. A., Hall R. D., London R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 1989 Mar;256(3 Pt 1):C540–C548. doi: 10.1152/ajpcell.1989.256.3.C540. [DOI] [PubMed] [Google Scholar]
  29. Romani A., Dowell E., Scarpa A. Cyclic AMP-induced Mg2+ release from rat liver hepatocytes, permeabilized hepatocytes, and isolated mitochondria. J Biol Chem. 1991 Dec 25;266(36):24376–24384. [PubMed] [Google Scholar]
  30. Romani A., Marfella C., Scarpa A. Cell magnesium transport and homeostasis: role of intracellular compartments. Miner Electrolyte Metab. 1993;19(4-5):282–289. [PubMed] [Google Scholar]
  31. Romani A., Marfella C., Scarpa A. Regulation of Mg2+ uptake in isolated rat myocytes and hepatocytes by protein kinase C. FEBS Lett. 1992 Jan 20;296(2):135–140. doi: 10.1016/0014-5793(92)80364-m. [DOI] [PubMed] [Google Scholar]
  32. Romani A., Scarpa A. Norepinephrine evokes a marked Mg2+ efflux from liver cells. FEBS Lett. 1990 Aug 20;269(1):37–40. doi: 10.1016/0014-5793(90)81113-3. [DOI] [PubMed] [Google Scholar]
  33. Romani A., Scarpa A. cAMP control of Mg2+ homeostasis in heart and liver cells. Magnes Res. 1992 Jun;5(2):131–137. [PubMed] [Google Scholar]
  34. Stalmans W., Cadefau J., Wera S., Bollen M. New insight into the regulation of liver glycogen metabolism by glucose. Biochem Soc Trans. 1997 Feb;25(1):19–25. doi: 10.1042/bst0250019. [DOI] [PubMed] [Google Scholar]
  35. Thomas A. P., Alexander J., Williamson J. R. Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J Biol Chem. 1984 May 10;259(9):5574–5584. [PubMed] [Google Scholar]
  36. Van de Werve G., Hers H. G. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate. Biochem J. 1979 Jan 15;178(1):119–126. doi: 10.1042/bj1780119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Veloso D., Guynn R. W., Oskarsson M., Veech R. L. The concentrations of free and bound magnesium in rat tissues. Relative constancy of free Mg 2+ concentrations. J Biol Chem. 1973 Jul 10;248(13):4811–4819. [PubMed] [Google Scholar]
  38. van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977 Mar 15;162(3):601–609. doi: 10.1042/bj1620601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES